Fetal Genetic Variants Implicated in Spontaneous Preterm Birth Risk
|
By LabMedica International staff writers Posted on 03 Jul 2019 |

Image: The UltraClean BloodSpin DNA Isolation Kit is designed to isolate genomic and mitochondrial DNA from whole blood (fresh, frozen or stored at 4 °C), buffy coat or cultured cells (Photo courtesy of MO BIO Laboratories).
Preterm live births that take place before 37 completed weeks of gestation and even as early as 22–24 weeks are a global problem. Up to 11.1% (15 million babies) of all births worldwide occur prematurely, and approximately 45% to 50% of them are idiopathic or spontaneous.
Many pathways and cellular processes are reported to be associated with Spontaneous Preterm Birth (SPTB), including response to infection, regulation of inflammation, stress, and other immunologically mediated processes. A gene has been identified involved in axon guidance, neuronal migration, and inflammation, that appear to coincide with spontaneous preterm birth.
An international team of Finnish and American scientists led by the Oulu University Hospital (Oulu, Finland) studied a population that included 260 SPTB cases (139 male and 121 female infants) and 9,630 controls (4,055 males and 5,575 females). The cases were very preterm infants born between 25 and 30 weeks of gestation and were clinically defined as SPTB in 2005–2008. In the Finnish cohorts, SPTB was defined as birth occurring after spontaneous onset of labor at <36 completed weeks + 1 day of gestation.
Umbilical cord blood, umbilical cord tissue, or saliva was obtained from the study subjects. Commercial kits were used to extract genomic DNA from blood, or Puregene Blood Core Kit and cord tissue using Qiagen’s Gentra Puregene Tissue Kit. Genome-wide SNP genotyping was performed with the Infinium HumanCoreExome BeadChip. In total, 18 placental samples were analyzed by immunohistochemistry.
The team reported that after replication testing in hundreds more babies born particularly prematurely and thousands of control infants, they were left with a single nucleotide polymorphism (SNP) in the SLIT2 gene that was significantly associated with spontaneous preterm birth, as well as suggestive associations for SNPs in other axon guidance genes. The team's follow-up gene expression, localization, and functional experiments indicated that SLIT2 and ROBO1, which encodes SLIT2's receptor protein, are expressed at higher-than-usual levels in certain parts of the placenta for infants experiencing spontaneous preterm birth.
The most significant association with spontaneous birth involved a SNP called rs116461311 in SLIT2, prompting a series of immunohistochemistry, qRT-PCR, and gene silencing experiments on placental samples or cells that the scientists used to decode SLIT2-ROBO1 interactions and their consequences for birth timing. The authors concluded that based on the currently available evidence they propose that activation of SLIT2-ROBO1 expression and signaling in [placental] trophoblast cells contributes to inflammatory and immune activation, which in turn leads to early labor and preterm birth. The study was published on June 13, 2019, in the journal PLOS Genetics.
Related Links:
Oulu University Hospital
Many pathways and cellular processes are reported to be associated with Spontaneous Preterm Birth (SPTB), including response to infection, regulation of inflammation, stress, and other immunologically mediated processes. A gene has been identified involved in axon guidance, neuronal migration, and inflammation, that appear to coincide with spontaneous preterm birth.
An international team of Finnish and American scientists led by the Oulu University Hospital (Oulu, Finland) studied a population that included 260 SPTB cases (139 male and 121 female infants) and 9,630 controls (4,055 males and 5,575 females). The cases were very preterm infants born between 25 and 30 weeks of gestation and were clinically defined as SPTB in 2005–2008. In the Finnish cohorts, SPTB was defined as birth occurring after spontaneous onset of labor at <36 completed weeks + 1 day of gestation.
Umbilical cord blood, umbilical cord tissue, or saliva was obtained from the study subjects. Commercial kits were used to extract genomic DNA from blood, or Puregene Blood Core Kit and cord tissue using Qiagen’s Gentra Puregene Tissue Kit. Genome-wide SNP genotyping was performed with the Infinium HumanCoreExome BeadChip. In total, 18 placental samples were analyzed by immunohistochemistry.
The team reported that after replication testing in hundreds more babies born particularly prematurely and thousands of control infants, they were left with a single nucleotide polymorphism (SNP) in the SLIT2 gene that was significantly associated with spontaneous preterm birth, as well as suggestive associations for SNPs in other axon guidance genes. The team's follow-up gene expression, localization, and functional experiments indicated that SLIT2 and ROBO1, which encodes SLIT2's receptor protein, are expressed at higher-than-usual levels in certain parts of the placenta for infants experiencing spontaneous preterm birth.
The most significant association with spontaneous birth involved a SNP called rs116461311 in SLIT2, prompting a series of immunohistochemistry, qRT-PCR, and gene silencing experiments on placental samples or cells that the scientists used to decode SLIT2-ROBO1 interactions and their consequences for birth timing. The authors concluded that based on the currently available evidence they propose that activation of SLIT2-ROBO1 expression and signaling in [placental] trophoblast cells contributes to inflammatory and immune activation, which in turn leads to early labor and preterm birth. The study was published on June 13, 2019, in the journal PLOS Genetics.
Related Links:
Oulu University Hospital
Latest Molecular Diagnostics News
- New DNA Test Tracks Spread of Parasitic Disease from Single Sample
- Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
- Genetic Testing Trifecta Predicts Risk of Sudden Cardiac Death and Arrhythmia
- Maternal Blood Test Detects Pre-Eclampsia Risk Before Symptoms Develop
- Blood Test Could Assess Concussion Severity in Teenagers with TBI
- Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
- New Biomarker Panel to Improve Heart Failure Diagnosis in Women
- Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
- Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes
- High-Sensitivity Troponin I Assay Aids in Diagnosis of Myocardial Infarction
- Fast Low-Cost Alzheimer’s Tests Could Detect Disease in Early and Silent Stages
- Further Investigation of FISH-Negative Tests for Renal Cell Carcinoma Improves Diagnostic Accuracy
- First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








