Assay May Boost Treatment of Non-Hodgkin Lymphoma
|
By LabMedica International staff writers Posted on 14 Nov 2017 |

Image: The Hitachi ABI 3130XL capillary electrophoresis genetic analyzer system (Photo courtesy of Cal-L enterprises).
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide. Recent advancements indicate that both the prognosis and choice of treatment of DLBCL may depend on identifying its molecular subtype.
DLBCL includes three major subtypes termed germinal center B-cell-like, activated B-cell-like, and primary mediastinal B-cell lymphoma. A reliable, accessible, rapid, and cost-effective new gene expression signature assay has been developed that can enhance lymphoma management by helping to match tumors with the appropriate targeted therapy.
A team of scientists working with those at the Centre Henri Becquerel (Rouen, France) collected a total of 218 biopsy samples, including fresh/frozen biopsies of 150 DLBCL cases had previously been analyzed using U133 + 2 GEP arrays. A total of 38 primary mediastinal B-cell lymphoma (PMBL) cases from another trial and 29 from the Center Henri Becquerel, were also included as well as 30 DLBCL cases from the same institution.
The investigators extracted RNA samples from formalin-fixed paraffin-embedded (FFPE) tissue using Siemens TPS and Versant reagents kit. Immunoperoxidase stains were performed on a Benchmark Ultra automated stainer using Ultraview Universal diaminobenzidine detection kits. A rapid and inexpensive reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) assay was developed that allows for an accurate classification of germinal center B-cell-like (GCB) and activated B-cell-like (ABC) DLBCLs. The resulting MLPA amplicons were analyzed by fragment analysis using an ABI 3130 XL capillary electrophoresis system.
The team tested 150 RNA samples extracted from biopsies and 42% of the samples had the ABC subtype, 37% the GCB subtype, and 10% molecular PMBL, while 11% of samples could not be classified. Overall, the RT-MLPA assay correctly assigned 85.0% of the cases into the expected subtypes compared to 78.8% with immunohistochemistry. The assay was also able to detect the MYD88 L265P mutation, one of the most common genetic abnormalities found in ABC DLBCLs. This information can influence treatment, since the presence of the mutation has been suggested to be predictive of ibrutinib sensitivity.
The authors concluded that RT-MLPA appears as an efficient, rapid, and cost-effective alternative to the current methods used in the clinic to establish the cell of origin classification of DLBCLs. In contrast to other technologic approaches its implementation requires only common laboratory equipment, that is, a thermal cycler and a capillary genetic analyzer, and does not necessitate the acquisition of any specialized platform. By allowing the identification of the three major DLBCL subtypes and a simultaneous evaluation of multiple prognostic and theranostic markers and therapeutic targets, RT-MLPA could contribute to a more efficient management of these aggressive tumors in both clinical trials and daily practice. The study was published in the November 2017 issue of the Journal of Molecular Diagnostics.
Related Links:
Centre Henri Becquerel
DLBCL includes three major subtypes termed germinal center B-cell-like, activated B-cell-like, and primary mediastinal B-cell lymphoma. A reliable, accessible, rapid, and cost-effective new gene expression signature assay has been developed that can enhance lymphoma management by helping to match tumors with the appropriate targeted therapy.
A team of scientists working with those at the Centre Henri Becquerel (Rouen, France) collected a total of 218 biopsy samples, including fresh/frozen biopsies of 150 DLBCL cases had previously been analyzed using U133 + 2 GEP arrays. A total of 38 primary mediastinal B-cell lymphoma (PMBL) cases from another trial and 29 from the Center Henri Becquerel, were also included as well as 30 DLBCL cases from the same institution.
The investigators extracted RNA samples from formalin-fixed paraffin-embedded (FFPE) tissue using Siemens TPS and Versant reagents kit. Immunoperoxidase stains were performed on a Benchmark Ultra automated stainer using Ultraview Universal diaminobenzidine detection kits. A rapid and inexpensive reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) assay was developed that allows for an accurate classification of germinal center B-cell-like (GCB) and activated B-cell-like (ABC) DLBCLs. The resulting MLPA amplicons were analyzed by fragment analysis using an ABI 3130 XL capillary electrophoresis system.
The team tested 150 RNA samples extracted from biopsies and 42% of the samples had the ABC subtype, 37% the GCB subtype, and 10% molecular PMBL, while 11% of samples could not be classified. Overall, the RT-MLPA assay correctly assigned 85.0% of the cases into the expected subtypes compared to 78.8% with immunohistochemistry. The assay was also able to detect the MYD88 L265P mutation, one of the most common genetic abnormalities found in ABC DLBCLs. This information can influence treatment, since the presence of the mutation has been suggested to be predictive of ibrutinib sensitivity.
The authors concluded that RT-MLPA appears as an efficient, rapid, and cost-effective alternative to the current methods used in the clinic to establish the cell of origin classification of DLBCLs. In contrast to other technologic approaches its implementation requires only common laboratory equipment, that is, a thermal cycler and a capillary genetic analyzer, and does not necessitate the acquisition of any specialized platform. By allowing the identification of the three major DLBCL subtypes and a simultaneous evaluation of multiple prognostic and theranostic markers and therapeutic targets, RT-MLPA could contribute to a more efficient management of these aggressive tumors in both clinical trials and daily practice. The study was published in the November 2017 issue of the Journal of Molecular Diagnostics.
Related Links:
Centre Henri Becquerel
Latest Hematology News
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








