LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Handheld Mass Spectrometer Identifies Cancer Tissue in Seconds

By LabMedica International staff writers
Posted on 19 Sep 2017
Image: The MasSpec Pen rapidly and accurately detects live cancer during surgery, helping improve treatment and reduce the chances of cancer recurrence (Photo courtesy of the University of Texas at Austin).
Image: The MasSpec Pen rapidly and accurately detects live cancer during surgery, helping improve treatment and reduce the chances of cancer recurrence (Photo courtesy of the University of Texas at Austin).
A team of scientists and engineers has invented a powerful device that rapidly identifies living cancerous tissue, giving surgeons precise diagnostic information about what tissue to cut or preserve.

“If you talk to cancer patients after surgery, one of the first things many will say is ‘I hope the surgeon got all the cancer out’,” said Livia Schiavinato Eberlin, assistant professor at University of Texas at Austin (Austin, TX, USA) who designed the study and led the team, “our technology could vastly improve the odds that surgeons really do remove every last trace of cancer during surgery.”

The current method, Frozen Section Analysis, for diagnosis and determining the boundary between cancer and normal tissue during surgery is slow and sometimes inaccurate. Each sample can take 30 minutes or more to prepare and interpret by a pathologist, increasing risk to the patient of infection and negative effects of anesthesia. For some types of cancers frozen section interpretation can be difficult, often yielding unreliable results.

The new MasSpec Pen took about 10 seconds to provide a diagnosis and was over 96% accurate in tests on tissues removed from 253 human cancer patients. It also detected cancer in marginal regions between normal and cancer tissues that presented mixed cellular composition.

This technology also offers the patient a safer surgery. “It allows us to be much more precise in what tissue we remove and what we leave behind,” said project collaborator James Suliburk, of Baylor College of Medicine. Although maximizing cancer removal is critical, removing too much healthy tissue can also have profound negative consequences: For example, breast cancer patients could experience higher risk of painful side effects and nerve damage, in addition to aesthetic impacts. Thyroid cancer patients could lose speech ability or the ability to regulate the body’s calcium levels in ways important for muscle and nerve function.

Living cells produce metabolites and each type of cancer produces a unique set of metabolites and other biomarkers. “Because the metabolites in cancer and normal cells are so different, we extract and analyze them with the MasSpec Pen to obtain a molecular fingerprint of the tissue. What is incredible is that through this simple and gentle chemical process, the MasSpec Pen rapidly provides diagnostic molecular information without causing tissue damage,” said Prof. Eberlin.

The molecular fingerprint obtained by the MasSpec Pen from an uncharacterized tissue sample is instantaneously evaluated by a “statistical classifier” software trained on a database of molecular fingerprints that Prof. Eberlin and her colleagues gathered from the 253 human tissue samples. The samples included both normal and cancerous tissues of the breast, lung, thyroid, and ovary.

The pen releases a drop of water onto the tissue, and small molecules migrate into the water. The water sample is driven into a mass spectrometer, which detects thousands of molecules as a molecular fingerprint. The disposable device requires simply holding the pen against the patient’s tissue, triggering the automated analysis using a foot pedal, and waiting a few seconds for a result.

In tests performed on human samples, the device was more than 96% accurate for cancer diagnosis. It also diagnosed cancer in live, tumor-bearing mice during surgery without causing observable tissue harm or stress to the animals.

So the process would be low-impact for patients and biocompatible. “When designing the MasSpec Pen, we made sure the tissue remains intact by coming into contact only with water and the plastic tip of the MasSpec Pen during the procedure,” said Prof. Zhang.

The study, by Zhang J et al, was published September 6, 2017, in the journal Science Translational Medicine.

Related Links:
University of Texas at Austin

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more