Biosensor Device Developed for Zika Diagnosis
|
By LabMedica International staff writers Posted on 21 Aug 2017 |

Image: A bioplasmonic paper-based device (BPD) for the detection of Zika virus (ZIKV) infection, via quantification of serum anti-ZIKV-nonstructural protein 1 (NS1) IgG and IgM (Photo courtesy of James Byard).
A novel plasmonic biosensor-based detection system was developed that can diagnose recent or current Zika virus (ZIKV) infection in 15 minutes or less.
The ongoing Zika virus epidemic demands a response based on rapid, low-cost, and accurate diagnostic tests that can be broadly distributed and applied in pandemic regions. Toward this end, investigators at Washington University (St. Louis, MO, USA) developed an innovative, adaptable, and rapidly deployable bioplasmonic paper-based device (BPD) for the detection of ZIKV infection, via quantification of serum anti-ZIKV-nonstructural protein 1 (NS1) IgG and IgM. BPD is based on ZIKV-NS1 protein as a capture element and gold nanorods as plasmonic nanotransducers.
Plasmonic resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light. In the current study gold nanorods acted as the plasmon resonance transducers.
In the new BPD, the NS1 protein was bound to gold nanorods mounted on a piece of paper that was then coated with protective nanocrystals. The nanocrystals protected the nanorods and allowed them to be stored without refrigeration. To perform the assay, the paper was rinsed with slightly acidic water, removing the protective crystals and exposing the protein mounted on the nanorods. A drop of the patient's blood was applied. If the patient had come into contact with the virus, the blood sample contained immunoglobulins that bound to the Zika virus protein. Binding of immunoglobulins from the blood sample caused the nanorods to undergo a slight color change that could be detected with a hand-held spectrophotometer.
Results of a small clinical study revealed that the BPD displayed excellent sensitivity and selectivity to both anti-ZIKV-NS1 IgG and IgM in human serum. In addition, excellent stability of BPDs at room and even elevated temperature for one month was achieved by the metal–organic framework (MOF)-based biopreservation technique.
"We are taking advantage of the fact that patients mount an immune attack against this viral protein," said senior author Dr. Jeremiah J. Morrissey, research professor of anesthesiology at Washington University. "The immunoglobulins persist in the blood for a few months, and when they come into contact with the gold nanorods, the nanorods undergo a slight color change that can be detected with a hand-held spectrophotometer. With this test, results will be clear before the patient leaves the clinic, allowing immediate counseling and access to treatment."
Details of the BPD were published in the August 10, 2017, online edition of the journal Advanced Biosystems.
Related Links:
Washington University
The ongoing Zika virus epidemic demands a response based on rapid, low-cost, and accurate diagnostic tests that can be broadly distributed and applied in pandemic regions. Toward this end, investigators at Washington University (St. Louis, MO, USA) developed an innovative, adaptable, and rapidly deployable bioplasmonic paper-based device (BPD) for the detection of ZIKV infection, via quantification of serum anti-ZIKV-nonstructural protein 1 (NS1) IgG and IgM. BPD is based on ZIKV-NS1 protein as a capture element and gold nanorods as plasmonic nanotransducers.
Plasmonic resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light. In the current study gold nanorods acted as the plasmon resonance transducers.
In the new BPD, the NS1 protein was bound to gold nanorods mounted on a piece of paper that was then coated with protective nanocrystals. The nanocrystals protected the nanorods and allowed them to be stored without refrigeration. To perform the assay, the paper was rinsed with slightly acidic water, removing the protective crystals and exposing the protein mounted on the nanorods. A drop of the patient's blood was applied. If the patient had come into contact with the virus, the blood sample contained immunoglobulins that bound to the Zika virus protein. Binding of immunoglobulins from the blood sample caused the nanorods to undergo a slight color change that could be detected with a hand-held spectrophotometer.
Results of a small clinical study revealed that the BPD displayed excellent sensitivity and selectivity to both anti-ZIKV-NS1 IgG and IgM in human serum. In addition, excellent stability of BPDs at room and even elevated temperature for one month was achieved by the metal–organic framework (MOF)-based biopreservation technique.
"We are taking advantage of the fact that patients mount an immune attack against this viral protein," said senior author Dr. Jeremiah J. Morrissey, research professor of anesthesiology at Washington University. "The immunoglobulins persist in the blood for a few months, and when they come into contact with the gold nanorods, the nanorods undergo a slight color change that can be detected with a hand-held spectrophotometer. With this test, results will be clear before the patient leaves the clinic, allowing immediate counseling and access to treatment."
Details of the BPD were published in the August 10, 2017, online edition of the journal Advanced Biosystems.
Related Links:
Washington University
Latest Microbiology News
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read more
Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
Diagnosing disease typically requires milliliters of blood drawn at clinics, depending on needles, laboratory infrastructure, and trained personnel. This process is often painful, resource-intensive, and... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








