Genomics Technique Accelerate Detection of Foodborne Bacterial Outbreaks
By LabMedica International staff writers Posted on 15 Dec 2016 |

Image: Bacterial colonies of Staphylococcus aureus growing on horse blood agar (Photo courtesy of OMICS International).
Diagnostic testing for foodborne pathogens relies on culture-based techniques that are not rapid enough for real-time disease surveillance and do not give a quantitative picture of pathogen abundance or the response of the natural microbiome.
Metagenomics identifies the microbes present by sequencing the entire DNA present in a sample and comparing the genomic data to a database of known microbes. In addition to identifying the bacteria present in the samples, the methodology can also measure the relative abundance of each microbial species and their virulence potential, among other things.
A collaboration of scientists from the Centers for Disease Control and Prevention (Atlanta, GA USA) and the Georgia Institute of Technology (Atlanta, GA, USA) applied shotgun metagenomics to stool samples collected from two geographically isolated foodborne outbreaks in Alabama and Colorado, where the etiologic agents were identified as distinct strains of Salmonella enterica serovar Heidelberg by culture-dependent methods. The metagenomics data provided specific information about the bacterial phenotype involved and identified a secondary Staphylococcus aureus pathogen present in two of the samples tested. Knowing the specific phenotype can help in pinpointing the origins of an outbreak, while information about the secondary infection may help explain related factors such as the severity of the infection.
The scientists were also able to rule out one species, Escherichia coli (or E. coli), because the variant present was not of a virulent type. Variants of these bacteria are present naturally in the gut microbiome (called "commensal E. coli") while other variants are notorious enteric pathogens. Metagenomics showed the abundant E. coli population in the outbreak samples was probably commensal, and its growth may have been accelerated when conditions became more favorable during the Salmonella infection. In the two cases evaluated, scientists were able to determine that although the symptoms were similar, the outbreaks were caused by different variants of Salmonella and therefore were probably not connected.
Andrew D. Huang, PhD, a microbiologist/ bioinformatician and lead author of the study said, “Currently, the most advanced DNA fingerprinting method, whole genome sequencing, requires first pulling out, or isolating in a pure culture, the bacteria that made a person sick to generate a fingerprint. Metagenomics differs from whole genome sequencing because it could allow us to sequence the entire DNA in a patient's sample. It could allow us to skip the isolation steps and go directly from a stool sample to a highly detailed DNA fingerprint of the bacteria that made you sick. This method saves time and provides more detail that could be helpful for diagnosing a patient and identifying an outbreak.” The study was published on November 23, 2016, in the journal Applied and Environmental Microbiology.
Related Links:
Centers for Disease Control and Prevention
Georgia Institute of Technology
Metagenomics identifies the microbes present by sequencing the entire DNA present in a sample and comparing the genomic data to a database of known microbes. In addition to identifying the bacteria present in the samples, the methodology can also measure the relative abundance of each microbial species and their virulence potential, among other things.
A collaboration of scientists from the Centers for Disease Control and Prevention (Atlanta, GA USA) and the Georgia Institute of Technology (Atlanta, GA, USA) applied shotgun metagenomics to stool samples collected from two geographically isolated foodborne outbreaks in Alabama and Colorado, where the etiologic agents were identified as distinct strains of Salmonella enterica serovar Heidelberg by culture-dependent methods. The metagenomics data provided specific information about the bacterial phenotype involved and identified a secondary Staphylococcus aureus pathogen present in two of the samples tested. Knowing the specific phenotype can help in pinpointing the origins of an outbreak, while information about the secondary infection may help explain related factors such as the severity of the infection.
The scientists were also able to rule out one species, Escherichia coli (or E. coli), because the variant present was not of a virulent type. Variants of these bacteria are present naturally in the gut microbiome (called "commensal E. coli") while other variants are notorious enteric pathogens. Metagenomics showed the abundant E. coli population in the outbreak samples was probably commensal, and its growth may have been accelerated when conditions became more favorable during the Salmonella infection. In the two cases evaluated, scientists were able to determine that although the symptoms were similar, the outbreaks were caused by different variants of Salmonella and therefore were probably not connected.
Andrew D. Huang, PhD, a microbiologist/ bioinformatician and lead author of the study said, “Currently, the most advanced DNA fingerprinting method, whole genome sequencing, requires first pulling out, or isolating in a pure culture, the bacteria that made a person sick to generate a fingerprint. Metagenomics differs from whole genome sequencing because it could allow us to sequence the entire DNA in a patient's sample. It could allow us to skip the isolation steps and go directly from a stool sample to a highly detailed DNA fingerprint of the bacteria that made you sick. This method saves time and provides more detail that could be helpful for diagnosing a patient and identifying an outbreak.” The study was published on November 23, 2016, in the journal Applied and Environmental Microbiology.
Related Links:
Centers for Disease Control and Prevention
Georgia Institute of Technology
Latest Microbiology News
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
- Blood Culture Assay Enhances Diagnostic Stewardship Through Targeted Panel Selection
- Real-Time Genome Sequencing Detects Dangerous Superbug Causing Hospital Infections
- Diagnostic Test Accurately Detects Colorectal Cancer by Identifying Microbial Signature in Gut Bacteria
- Rapid Bedside Test Predicts Sepsis with Over 90% Accuracy
- New Blood Test Detects Up to Five Infectious Diseases at POC
- Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
- New Test Diagnoses Bacterial Meningitis Quickly and Accurately
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
RNA Screening Test Could Detect Colon Polyps Before They Become Cancerous
Colorectal cancer has become a growing health crisis, especially as it increasingly affects younger adults in their 20s, 30s, and 40s, while screening rates remain low. Colorectal cancer is now the leading... Read more
New RT-LAMP Assay Offers Affordable and Reliable Pathogen Detection for Resource-Limited Settings
The high cost and logistical complexities associated with rapid, point-of-care tests have long hampered widespread access to molecular diagnostics, especially in low- and middle-income countries.... Read more
New Biomarker Panel to Enable Early Detection of Pancreatic Cancer
Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more
Ultrarapid Whole Genome Sequencing for Neonatal and Pediatric Patients Delivers Results In 48 Hours
Genetic diseases are the leading identifiable cause of infant mortality, and early diagnosis is crucial to improve patient outcomes. In the neonatal and pediatric intensive care units (NICU and PICU),... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read morePathology
view channel
Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels
Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more
New AI-Based Method Effectively Identifies Disease Phenotypes Using Light-Based Imaging
Precision medicine, where treatment strategies are tailored to a patient's unique disease characteristics, holds great promise for cancer therapy. However, identifying disease phenotypes, which are critical... Read more
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
BD Biosciences & Diagnostic Solutions to Merge with Waters
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) and Waters Corporation (Milford, MA, USA) have entered into a definitive agreement to combine BD's Biosciences & Diagnostic Solutions... Read more