Rare Genetic Variations Linked to Schizophrenia
|
By LabMedica International staff writers Posted on 09 Dec 2016 |

Image: Chromosome ideograms showing some locations of genome-wide significant linkages in schizophrenia and bipolar disorder. Asterisks mark the locations of chromosomal abnormalities associated with schizophrenia (Photo courtesy of SPL).
Genetic variations that increase schizophrenia risk are rare, making it difficult to study their role and to overcome this. Recently, the genomes of more than 41,000 people have been analyzed in the largest study of its kind to date.
The mutations, known as copy number variants, are deletions or duplications of the DNA sequence. A copy number variant (CNC) may affect dozens of genes, or it can disrupt or duplicate a single gene. This type of variation can cause significant alterations to the genome and lead to psychiatric disorders.
A large team of international scientists led by those at the University of California, San Diego School of Medicine (La Jolla, CA, USA) analyzed the genomes of 21,094 people with schizophrenia and 20,227 people without schizophrenia. They found eight locations in the genome with copy number variants associated with schizophrenia risk. Only a small fraction of cases (1.4%) carried these variants. The team also found that these copy number variants occurred more frequently in genes involved in the function of synapses, the connections between brain cells that transmit chemical messages.
Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination. With its large sample size, this study had the power to find copy number variants with large effects that occur in more than 0.1%of schizophrenia cases. However, the team said they are still missing many variants. More analyses will be needed to detect risk variants with smaller effects, or ultra-rare variants.
Jonathan Sebat, PhD, a Professor of Psychiatry and Cellular and Molecular Medicine and the lead investigator of the study said, “This study represents a milestone that demonstrates what large collaborations in psychiatric genetics can accomplish. We are confident that applying this same approach to a lot of new data will help us discover additional genomic variations and identify specific genes that play a role in schizophrenia and other psychiatric conditions.” The study was published on November 21, 2016, in the journal Nature Genetics.
Related Links:
University of California, San Diego School of Medicine
The mutations, known as copy number variants, are deletions or duplications of the DNA sequence. A copy number variant (CNC) may affect dozens of genes, or it can disrupt or duplicate a single gene. This type of variation can cause significant alterations to the genome and lead to psychiatric disorders.
A large team of international scientists led by those at the University of California, San Diego School of Medicine (La Jolla, CA, USA) analyzed the genomes of 21,094 people with schizophrenia and 20,227 people without schizophrenia. They found eight locations in the genome with copy number variants associated with schizophrenia risk. Only a small fraction of cases (1.4%) carried these variants. The team also found that these copy number variants occurred more frequently in genes involved in the function of synapses, the connections between brain cells that transmit chemical messages.
Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination. With its large sample size, this study had the power to find copy number variants with large effects that occur in more than 0.1%of schizophrenia cases. However, the team said they are still missing many variants. More analyses will be needed to detect risk variants with smaller effects, or ultra-rare variants.
Jonathan Sebat, PhD, a Professor of Psychiatry and Cellular and Molecular Medicine and the lead investigator of the study said, “This study represents a milestone that demonstrates what large collaborations in psychiatric genetics can accomplish. We are confident that applying this same approach to a lot of new data will help us discover additional genomic variations and identify specific genes that play a role in schizophrenia and other psychiatric conditions.” The study was published on November 21, 2016, in the journal Nature Genetics.
Related Links:
University of California, San Diego School of Medicine
Latest Molecular Diagnostics News
- First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection

- Urine Test Detects Early Stage Pancreatic Cancer
- Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
- Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients
- Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
- Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
- Blood Test Could Predict Bariatric Surgery Outcomes in Teenagers
- ctDNA Blood Test to Help Personalize Postsurgical Colon Cancer Treatment
- AI Powered Blood Test Predicts Suicide Risk in Bipolar Patients
- DNA Sensor Enables Molecular Detection from Single Blood Drop
- DNA-Powered Test Accurately Detects E. Coli Lookalike Bacteria
- World’s Fastest DNA Sequencing Technique to Revolutionize NICU Genomic Care
- Blood Test Uses Cell-Free DNA to Detect ALS Faster and More Accurately
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








