Rare Genetic Variations Linked to Schizophrenia
|
By LabMedica International staff writers Posted on 09 Dec 2016 |

Image: Chromosome ideograms showing some locations of genome-wide significant linkages in schizophrenia and bipolar disorder. Asterisks mark the locations of chromosomal abnormalities associated with schizophrenia (Photo courtesy of SPL).
Genetic variations that increase schizophrenia risk are rare, making it difficult to study their role and to overcome this. Recently, the genomes of more than 41,000 people have been analyzed in the largest study of its kind to date.
The mutations, known as copy number variants, are deletions or duplications of the DNA sequence. A copy number variant (CNC) may affect dozens of genes, or it can disrupt or duplicate a single gene. This type of variation can cause significant alterations to the genome and lead to psychiatric disorders.
A large team of international scientists led by those at the University of California, San Diego School of Medicine (La Jolla, CA, USA) analyzed the genomes of 21,094 people with schizophrenia and 20,227 people without schizophrenia. They found eight locations in the genome with copy number variants associated with schizophrenia risk. Only a small fraction of cases (1.4%) carried these variants. The team also found that these copy number variants occurred more frequently in genes involved in the function of synapses, the connections between brain cells that transmit chemical messages.
Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination. With its large sample size, this study had the power to find copy number variants with large effects that occur in more than 0.1%of schizophrenia cases. However, the team said they are still missing many variants. More analyses will be needed to detect risk variants with smaller effects, or ultra-rare variants.
Jonathan Sebat, PhD, a Professor of Psychiatry and Cellular and Molecular Medicine and the lead investigator of the study said, “This study represents a milestone that demonstrates what large collaborations in psychiatric genetics can accomplish. We are confident that applying this same approach to a lot of new data will help us discover additional genomic variations and identify specific genes that play a role in schizophrenia and other psychiatric conditions.” The study was published on November 21, 2016, in the journal Nature Genetics.
Related Links:
University of California, San Diego School of Medicine
The mutations, known as copy number variants, are deletions or duplications of the DNA sequence. A copy number variant (CNC) may affect dozens of genes, or it can disrupt or duplicate a single gene. This type of variation can cause significant alterations to the genome and lead to psychiatric disorders.
A large team of international scientists led by those at the University of California, San Diego School of Medicine (La Jolla, CA, USA) analyzed the genomes of 21,094 people with schizophrenia and 20,227 people without schizophrenia. They found eight locations in the genome with copy number variants associated with schizophrenia risk. Only a small fraction of cases (1.4%) carried these variants. The team also found that these copy number variants occurred more frequently in genes involved in the function of synapses, the connections between brain cells that transmit chemical messages.
Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination. With its large sample size, this study had the power to find copy number variants with large effects that occur in more than 0.1%of schizophrenia cases. However, the team said they are still missing many variants. More analyses will be needed to detect risk variants with smaller effects, or ultra-rare variants.
Jonathan Sebat, PhD, a Professor of Psychiatry and Cellular and Molecular Medicine and the lead investigator of the study said, “This study represents a milestone that demonstrates what large collaborations in psychiatric genetics can accomplish. We are confident that applying this same approach to a lot of new data will help us discover additional genomic variations and identify specific genes that play a role in schizophrenia and other psychiatric conditions.” The study was published on November 21, 2016, in the journal Nature Genetics.
Related Links:
University of California, San Diego School of Medicine
Latest Molecular Diagnostics News
- Sepsis Test Demonstrates Strong Performance in Post-Cardiac Surgery Patients
- Next-Gen Automated ELISA System Elevates Laboratory Performance
- Blood Test Combined with MRI Brain Scans Reveals Two Distinct Multiple Sclerosis Types
- At-Home Blood Tests Accurately Detect Key Alzheimer's Biomarkers
- Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology
- Blood Test Could Predict Death Risk in World’s Most Common Inherited Heart Disease
- Rapid POC Hepatitis C Test Provides Results Within One Hour
- New Biomarkers Predict Disease Severity in Children with RSV Bronchiolitis
- CTC Measurement Blood Test Guides Treatment Decisions in Metastatic Breast Cancer Subtype
- Multiplex Antibody Assay Could Transform Hepatitis B Immunity Testing
- Genetic Testing Improves Comprehensive Risk-Based Screening for Breast Cancer
- Urine Test Could Reveal Real Age and Life Span
- Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
- Blood Test Could Identify Biomarker Signature of Cerebral Malaria
- World’s First Biomarker Blood Test to Assess MS Progression
- Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
Urine drug testing plays a critical role in the emergency department, particularly for patients presenting with suspected overdose or altered mental status. Accurate and timely results can directly influence... Read more
New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
Ovarian cancer affects around one in 50 women during their lifetime, with roughly 7,000 diagnoses each year in the UK. The disease is often detected late because symptoms such as bloating, abdominal pain,... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







 Analyzer.jpg)