Genetic Analysis of Lesions Provides Accurate Esophageal Cancer Test
By LabMedica International staff writers Posted on 31 Aug 2016 |

Image: A histopathology showing simple columnar metaplasia of the epithelium of Barrett\'s Esophagus characterized by goblet cell (Photo courtesy of Nephron).
Barrett's Esophagus is a common condition that affects an estimated 1.5 million people in the UK alone, although many are undiagnosed. This condition involves normal cells in the esophagus being replaced by an unusual cell type called Barrett's Esophagus, and is thought to be a consequence of chronic reflux or heartburn.
People with Barrett's have an increased risk of developing esophageal cancer, a neoplasm that has a five year survival of 15% and although the overall lifetime risk of developing esophageal cancer in people with Barrett's is significant, most Barrett's patients will not develop cancer in their lifetime. It is the unfortunate few who will develop an aggressive cancer.
An international team of scientists led by those at the Queen Mary University of London (UK) followed up more than 300 Barrett's patients over three years, and analyzed around 50,000 cells in the process. They performed genetic analysis of individual cells and measured the genetic diversity in each lesion to track it over time. The results validated a previous group's discovery that measurement of the genetic diversity between Barrett's cells in any given lesion is a good predictor of which patients are at high risk of developing cancer. Genetic diversity describes how diverse the genetic make-up of individual cells is in any given group of cells.
In addition, the team found that there were no significant changes in genetic diversity during the three years that the patients were followed. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm2 per year, often involving the p16 locus. This suggests that the genetic diversity amongst a person's Barrett's cells is essentially fixed over time, and mutations have little impact on the lesion's development. Whenever someone's Barrett's is tested, their future risk can be predicted regardless of how soon it is after the appearance of abnormal cells.
Trevor A. Graham PhD, a lecturer in Tumor Biology and senior author of the study said, “Our findings are important because they imply that a person's risk of developing esophageal cancer is fixed over time. In other words, we can predict from the outset which Barrett's patients fall into a high risk group of developing cancer and that risk does not change thereafter.” The study was published on August 19, 2016, in the journal Nature Communications.
Related Links:
Queen Mary University of London
People with Barrett's have an increased risk of developing esophageal cancer, a neoplasm that has a five year survival of 15% and although the overall lifetime risk of developing esophageal cancer in people with Barrett's is significant, most Barrett's patients will not develop cancer in their lifetime. It is the unfortunate few who will develop an aggressive cancer.
An international team of scientists led by those at the Queen Mary University of London (UK) followed up more than 300 Barrett's patients over three years, and analyzed around 50,000 cells in the process. They performed genetic analysis of individual cells and measured the genetic diversity in each lesion to track it over time. The results validated a previous group's discovery that measurement of the genetic diversity between Barrett's cells in any given lesion is a good predictor of which patients are at high risk of developing cancer. Genetic diversity describes how diverse the genetic make-up of individual cells is in any given group of cells.
In addition, the team found that there were no significant changes in genetic diversity during the three years that the patients were followed. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm2 per year, often involving the p16 locus. This suggests that the genetic diversity amongst a person's Barrett's cells is essentially fixed over time, and mutations have little impact on the lesion's development. Whenever someone's Barrett's is tested, their future risk can be predicted regardless of how soon it is after the appearance of abnormal cells.
Trevor A. Graham PhD, a lecturer in Tumor Biology and senior author of the study said, “Our findings are important because they imply that a person's risk of developing esophageal cancer is fixed over time. In other words, we can predict from the outset which Barrett's patients fall into a high risk group of developing cancer and that risk does not change thereafter.” The study was published on August 19, 2016, in the journal Nature Communications.
Related Links:
Queen Mary University of London
Latest Molecular Diagnostics News
- Highly Accurate Biomarkers Could Detect Ovarian Cancer Before Clinical Diagnosis
- New Gene Tool to Enable Earlier Detection and Treatment of Cardiometabolic Diseases
- Genetic Tool Predicts Lithium Responsiveness in Bipolar Disorder Patients
- Genetic Testing Benefits Critically Ill Adults
- Testing Blood Samples for Proteins Can Reveal Malaria Severity
- Blood Test Detects Multiple Sclerosis Risk Years Before Onset of Symptoms
- Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age
- RNA Screening Test Could Detect Colon Polyps Before They Become Cancerous
- New RT-LAMP Assay Offers Affordable and Reliable Pathogen Detection for Resource-Limited Settings
- New Biomarker Panel to Enable Early Detection of Pancreatic Cancer
- Ultrarapid Whole Genome Sequencing for Neonatal and Pediatric Patients Delivers Results In 48 Hours
- AI-Enabled Blood Test Demonstrates Diagnostic, Prognostic and Predictive Utility Across Cancer Continuum
- DNA Methylation Signatures of Aging Could Help Assess Mortality Risk
- Molecular Diagnostics System Provides Lab-Quality Results at POC
- Cellular Signature Identifies Patients with Treatment Resistant Prostate Tumors
- MCED Could Be Valuable Supplement to Traditional Cancer Screening Approaches
Channels
Clinical Chemistry
view channel
Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
Parkinson’s disease is notoriously difficult to diagnose in its early stages, as motor symptoms do not appear until later in the progression of the disease. The ability to detect the disease up to seven... Read more
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
Highly Accurate Biomarkers Could Detect Ovarian Cancer Before Clinical Diagnosis
Ovarian cancer is a deadly and challenging disease, primarily because early detection is difficult. Most women (70-75%) are diagnosed only after the cancer has already spread, which significantly reduces... Read more
New Gene Tool to Enable Earlier Detection and Treatment of Cardiometabolic Diseases
Cardiometabolic diseases, which affect the heart, blood vessels, and the body's ability to process food and generate energy, are difficult to diagnose early due to the complex genetic changes that contribute... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy
To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
Cardiovascular disease is the leading cause of death worldwide, and atherosclerosis plays a critical role in its development. This chronic condition, characterized by the hardening and narrowing of arteries... Read more
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read moreTechnology
view channel
Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells
A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Safer, Portable and Low-Cost Imaging Solution to Revolutionize Biomedical Diagnostics
In diagnosing diseases and monitoring treatment, accurate and quick detection of temperature within biological tissues can be crucial, especially in early disease detection. Conventional methods such as... Read more
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read moreIndustry
view channel
QuidelOrtho and BÜHLMANN Collaborate on Gastrointestinal Biomarker Tests
QuidelOrtho Corporation (San Diego, CA, USA) and BÜHLMANN Laboratories AG (Schönenbuch, Switzerland) have announced the availability of the BÜHLMANN fCAL turbo and fPELA turbo assays on QuidelOrtho's... Read more