Genetic Analysis of Lesions Provides Accurate Esophageal Cancer Test
|
By LabMedica International staff writers Posted on 31 Aug 2016 |

Image: A histopathology showing simple columnar metaplasia of the epithelium of Barrett\'s Esophagus characterized by goblet cell (Photo courtesy of Nephron).
Barrett's Esophagus is a common condition that affects an estimated 1.5 million people in the UK alone, although many are undiagnosed. This condition involves normal cells in the esophagus being replaced by an unusual cell type called Barrett's Esophagus, and is thought to be a consequence of chronic reflux or heartburn.
People with Barrett's have an increased risk of developing esophageal cancer, a neoplasm that has a five year survival of 15% and although the overall lifetime risk of developing esophageal cancer in people with Barrett's is significant, most Barrett's patients will not develop cancer in their lifetime. It is the unfortunate few who will develop an aggressive cancer.
An international team of scientists led by those at the Queen Mary University of London (UK) followed up more than 300 Barrett's patients over three years, and analyzed around 50,000 cells in the process. They performed genetic analysis of individual cells and measured the genetic diversity in each lesion to track it over time. The results validated a previous group's discovery that measurement of the genetic diversity between Barrett's cells in any given lesion is a good predictor of which patients are at high risk of developing cancer. Genetic diversity describes how diverse the genetic make-up of individual cells is in any given group of cells.
In addition, the team found that there were no significant changes in genetic diversity during the three years that the patients were followed. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm2 per year, often involving the p16 locus. This suggests that the genetic diversity amongst a person's Barrett's cells is essentially fixed over time, and mutations have little impact on the lesion's development. Whenever someone's Barrett's is tested, their future risk can be predicted regardless of how soon it is after the appearance of abnormal cells.
Trevor A. Graham PhD, a lecturer in Tumor Biology and senior author of the study said, “Our findings are important because they imply that a person's risk of developing esophageal cancer is fixed over time. In other words, we can predict from the outset which Barrett's patients fall into a high risk group of developing cancer and that risk does not change thereafter.” The study was published on August 19, 2016, in the journal Nature Communications.
Related Links:
Queen Mary University of London
People with Barrett's have an increased risk of developing esophageal cancer, a neoplasm that has a five year survival of 15% and although the overall lifetime risk of developing esophageal cancer in people with Barrett's is significant, most Barrett's patients will not develop cancer in their lifetime. It is the unfortunate few who will develop an aggressive cancer.
An international team of scientists led by those at the Queen Mary University of London (UK) followed up more than 300 Barrett's patients over three years, and analyzed around 50,000 cells in the process. They performed genetic analysis of individual cells and measured the genetic diversity in each lesion to track it over time. The results validated a previous group's discovery that measurement of the genetic diversity between Barrett's cells in any given lesion is a good predictor of which patients are at high risk of developing cancer. Genetic diversity describes how diverse the genetic make-up of individual cells is in any given group of cells.
In addition, the team found that there were no significant changes in genetic diversity during the three years that the patients were followed. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm2 per year, often involving the p16 locus. This suggests that the genetic diversity amongst a person's Barrett's cells is essentially fixed over time, and mutations have little impact on the lesion's development. Whenever someone's Barrett's is tested, their future risk can be predicted regardless of how soon it is after the appearance of abnormal cells.
Trevor A. Graham PhD, a lecturer in Tumor Biology and senior author of the study said, “Our findings are important because they imply that a person's risk of developing esophageal cancer is fixed over time. In other words, we can predict from the outset which Barrett's patients fall into a high risk group of developing cancer and that risk does not change thereafter.” The study was published on August 19, 2016, in the journal Nature Communications.
Related Links:
Queen Mary University of London
Latest Molecular Diagnostics News
- World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
- Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
- DNA Detection Platform Enables Real-Time Molecular Detection
- STI Molecular Test Delivers Rapid POC Results for Treatment Guidance
- Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest
- Biomarkers Could Identify Patients at High Risk of Severe AKI After Major Surgery
- CLIA Test Identifies Head and Neck Cancer Recurrence from Post-Surgical Lymphatic Fluid
- New 15-Minute Hepatitis C Test Paves Way for Same-Day Treatment
- Ovarian Cancer Assay Outperforms Traditional Tests in Early Detection
- Ultrasensitive Method Detects Low-Frequency Cancer Mutations
- Blood Test Enables Non-Invasive Endometriosis Detection
- New Blood Biomarkers Help Diagnose Pregnancy-Linked Liver Complication
- Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
Channels
Clinical Chemistry
view channel
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read more
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read moreMolecular Diagnostics
view channel
World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more
Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
Antibiotic resistance is a steadily escalating threat to global healthcare, making common infections harder to treat and increasing the risk of severe complications. One of the most concerning pathogens... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreBlood Test Could Detect Adverse Immunotherapy Effects
Immune checkpoint inhibitors have transformed cancer treatment, but they can also trigger serious immune-related adverse events that damage healthy organs and may become life-threatening if not detected early.... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read moreTechnology
view channel
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read more
Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that is notoriously difficult to diagnose in its early stages. Early symptoms often overlap with other neurological... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more








