We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo
Medica 2025
Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Genetic Test Developed for an Often Fatal Mitochondrial Disease

By LabMedica International staff writers
Posted on 19 Jul 2016
Image: Mitochondria. Researchers have inherited mutations in the TMEM126B gene that cause debilitating and often fatal disease from infancy, and have developed a rapid diagnostic test that has already identified 6 patients from 4 families (Image courtesy of Newcastle University).
Image: Mitochondria. Researchers have inherited mutations in the TMEM126B gene that cause debilitating and often fatal disease from infancy, and have developed a rapid diagnostic test that has already identified 6 patients from 4 families (Image courtesy of Newcastle University).
Researchers have discovered disease-causing inherited mutations in the TMEM126B gene and developed a test providing rapid diagnosis of related mitochondrial disorders. Defects in TMEM126B cause problems with energy generation in muscles, and can lead to muscular weakness, blindness, fatal heart failure, liver failure, learning disability, diabetes, and seizures. There is currently no cure and affected children often die in early infancy.

A team of medics and scientists at Wellcome Trust Centre for Mitochondrial Research, Newcastle University (Newcastle, Tyne & Wear, UK), together with international collaborators identified the mutations and used next generation sequencing (NGS) to develop the test, which provides a result within 2-3 days. Their research confirmed the identity of a mutation in TMEM126B that causes mitochondrial disease affecting Complex I, one of five complexes involved in energy production. TMEM126B normally makes a protein necessary for complex I assembly.

First author Charlotte Alston, PhD student, described the technique, which has already identified 6 patients from 4 families affected by this form of mitochondrial disease: “Identifying a fault in Complex I [...] combined with our custom gene capture and the latest sequencing technology means we can screen many more genes to diagnose this debilitating disease. It means families can get a rapid diagnosis within days rather than the weeks and months that testing can currently take. For families who are waiting on a genetic diagnosis before trying for another baby, or they may already be expecting their next child, time really is of the essence.”

Senior author Professor Rob Taylor said: “The diagnosis of mitochondrial disease is often a complicated and time consuming process. There are over 1,300 potential genes that can lead to disease and, as such, finding the genetic cause is sometimes like looking for a needle in a haystack.”

For a family with one child affected with this type of mitochondrial disease, there is a 25% chance of each further child being affected. Professor Taylor added: “There is sadly no cure for mitochondrial disease so rapid diagnosis means parents who are wanting to have further children can opt for prenatal testing to ensure future children are healthy and without risk of developing severe disease. It provides options for families at risk of an otherwise incurable disease.”

The study, by Alston CL et al, was published July 7, 2016, in the American Journal of Human Genetics.

Related Links:
Newcastle University
Wellcome Trust Centre for Mitochondrial Research

New
Gold Member
Collection and Transport System
PurSafe Plus®
New
Gold Member
Hybrid Pipette
SWITCH
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Gold Member
Immunochromatographic Assay
CRYPTO Cassette

Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
GLOBE SCIENTIFIC, LLC