Likely Flaws Uncovered for LM-Method for Lyme Disease Detection
|
By LabMedica International staff writers Posted on 12 Jul 2016 |

Image: An adult deer tick Ixodes scapularis. Lyme disease is caused by Borrelia bacteria and transmitted to humans upon the bite of infected ticks of the genus Ixodes (Photo courtesy of Scott Bauer, Agricultural Research Service of USDA / Wikimedia).
According to a new study, the recently developed modified microscopy technique “LM-method” of examining blood samples to help diagnose Lyme disease (and babesiosis) – is unable to distinguish infected patients from healthy controls, yielding many false-positive results.
While most people who contract Lyme disease recover quickly after antibiotic treatment, up to 20% of patients report persistent symptoms years after being told standard tests are negative for the disease. Interest in new diagnostic tests is therefore high.
The tick vector Ixodidae transmits Borrelia (bacterial causative agent of Lyme disease) as well as Babesia (parasitic protozoan causative agent of babesiosis). The new research follows up on a previous study suggesting that LM-method could detect active cases of disease caused by Borrelia and/or Babesia in just 1-2 days. Considerable publicity, and thereby patient demand, for this test in Norway continued despite that earlier studies did not include a control group and methods were not validated and ready for use in patients.
To investigate the reliability of the new test, Dr Audun Aase, from the Norwegian Institute of Public Health (Oslo, Norway), and colleagues collected blood samples from people who had been suffering from Lyme disease-like symptoms for several years and previously tested positive for Borrelia and/or Babesia infection using LM-method (21 people), and from healthy controls with no known history of tick bites (41 people). The samples were then masked and analyzed in independent laboratories using a range of diagnostic tests including the LM-method, conventional microscopy, genetic fingerprint testing (PCR), and serology.
The study indicated that LM-method results in high numbers of false positives: 14 (66%) patient-group samples and 35 (85%) control-group samples were judged positive for Borrelia and/or Babesia. However, only 1 sample (5%) of the patient-group and 8 samples (20%) of the control-group tested positive for Borrelia DNA by PCR. None of the samples were positive for Babesia DNA, and conventional microscopy did not identify Babesia in any of the samples. In conclusion, the structures interpreted as Borrelia and Babesia using LM-method could not be verified by PCR and the LM-method was thus falsified.
In an accompanying editorial commentary, Dr Ram B. Dessau, infectious diseases expert and senior consultant at Slagelse Hospital (Slagelse, Denmark), wrote: “I hope the study serves as a warning against non-validated microscopic procedures and helps prevent mismanagement of patients with chronic complaints, who are lured to seek improper diagnosis in the future.”
The study, by Aase A et al, was published online February 2016 in the journal Infectious Diseases.
Related Links:
Norwegian Institute of Public Health
While most people who contract Lyme disease recover quickly after antibiotic treatment, up to 20% of patients report persistent symptoms years after being told standard tests are negative for the disease. Interest in new diagnostic tests is therefore high.
The tick vector Ixodidae transmits Borrelia (bacterial causative agent of Lyme disease) as well as Babesia (parasitic protozoan causative agent of babesiosis). The new research follows up on a previous study suggesting that LM-method could detect active cases of disease caused by Borrelia and/or Babesia in just 1-2 days. Considerable publicity, and thereby patient demand, for this test in Norway continued despite that earlier studies did not include a control group and methods were not validated and ready for use in patients.
To investigate the reliability of the new test, Dr Audun Aase, from the Norwegian Institute of Public Health (Oslo, Norway), and colleagues collected blood samples from people who had been suffering from Lyme disease-like symptoms for several years and previously tested positive for Borrelia and/or Babesia infection using LM-method (21 people), and from healthy controls with no known history of tick bites (41 people). The samples were then masked and analyzed in independent laboratories using a range of diagnostic tests including the LM-method, conventional microscopy, genetic fingerprint testing (PCR), and serology.
The study indicated that LM-method results in high numbers of false positives: 14 (66%) patient-group samples and 35 (85%) control-group samples were judged positive for Borrelia and/or Babesia. However, only 1 sample (5%) of the patient-group and 8 samples (20%) of the control-group tested positive for Borrelia DNA by PCR. None of the samples were positive for Babesia DNA, and conventional microscopy did not identify Babesia in any of the samples. In conclusion, the structures interpreted as Borrelia and Babesia using LM-method could not be verified by PCR and the LM-method was thus falsified.
In an accompanying editorial commentary, Dr Ram B. Dessau, infectious diseases expert and senior consultant at Slagelse Hospital (Slagelse, Denmark), wrote: “I hope the study serves as a warning against non-validated microscopic procedures and helps prevent mismanagement of patients with chronic complaints, who are lured to seek improper diagnosis in the future.”
The study, by Aase A et al, was published online February 2016 in the journal Infectious Diseases.
Related Links:
Norwegian Institute of Public Health
Latest Microbiology News
- New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
- Breakthroughs in Microbial Analysis to Enhance Disease Prediction
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreMolecular Diagnostics
view channel
Urine Test Could Reveal Real Age and Life Span
Chronological age does not always reflect how quickly the body is aging, as biological age is shaped by genetics, stress, sleep, nutrition, and lifestyle factors such as smoking. A higher biological age... Read more
Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
Prostate cancer is one of the most commonly diagnosed cancers in men and a leading cause of cancer-related death, particularly in the United States. African American men face a disproportionately higher... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read morePathology
view channel
Genetics and AI Improve Diagnosis of Aortic Stenosis
Aortic stenosis is a progressive narrowing of the aortic valve that restricts blood flow from the heart and can be fatal if left untreated. There are currently no medical therapies that can prevent or... Read more
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







