Establishment of Biomarker Panel May Lead to Rapid Tests for Early Diagnosis of Pancreatic Cancer
|
By LabMedica International staff writers Posted on 10 Apr 2016 |

Image: Micrograph of pancreatic ductal adenocarcinoma (the most common type of pancreatic cancer) (Photo courtesy of Wikimedia Commons).
A panel comprising five genetic biomarkers was shown to accurately differentiate among tissues from pancreatic tumors and those taken from various non-malignant sources.
Investigators at Beth Israel Deaconess Medical Center (Boston, MA, USA) applied innovative data normalization and gene selection approaches to analyze a number of publicly available pancreatic cancer gene expression datasets. They combined the statistical power of multiple genomic studies while masking their variability and batch effects to identify robust early diagnostic biomarkers of pancreatic cancer.
The investigators established a panel comprising the genes TMPRSS4 (Transmembrane protease, serine 4), AHNAK2 (AHNAK nucleoprotein 2), POSTN (Periostin), ECT2 (Epithelial cell transforming 2), and SERPINB5 (Serpin peptidase inhibitor, clade B (ovalbumin), member 5) that achieved on average 95% sensitivity and 89% specificity in discriminating pancreatic ductal adenocarcinoma (PDAC) from non-tumor samples in four training sets and similar performance in five independent validation datasets. The five-gene classifier accurately discriminated PDAC from chronic pancreatitis, other cancers, and non-tumor samples from PDAC precursors in three independent datasets.
PDAC-specific expression of the biomarker panel was measured by qRT-PCR (qualitative real-time PCR) in microdissected patient-derived FFPE (formalin-fixed, paraffin-embedded) tissues. Cell-based assays were then used to assess the impact of two of the biomarkers, TMPRSS4 and ECT2, on PDAC cells.
Results revealed that knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability, and TMPRSS4 knockdown also blocked PDAC migration and invasion.
“Pancreatic cancer is a devastating disease with a death rate close to the incidence rate,” said senior author Dr. Towia Libermann, professor of medicine at Beth Israel Deaconess Medical Center. “Because more than 90% of pancreatic cancer cases are diagnosed at the metastatic stage, when there are only limited therapeutic options, earlier diagnosis is anticipated to have a major impact on extending life expectancy for patients. There has been a lack of reliable markers, early indicators, and risk factors associated with pancreatic cancer, but this new way of differentiating between healthy and malignant tissue offers hope for earlier diagnosis and treatment.”
“Because these five genes are turned on so early in the development of pancreatic cancer, they may play roles as drivers of this disease and may be exciting targets for therapies,” said Dr. Libermann. “Moving forward, we will explore the potential to convert this tissue-based diagnostic into a noninvasive blood or urine test.”
The study was published in the March 16, 2016, online edition of the journal Oncotarget.
Related Links:
Beth Israel Deaconess Medical Center
Investigators at Beth Israel Deaconess Medical Center (Boston, MA, USA) applied innovative data normalization and gene selection approaches to analyze a number of publicly available pancreatic cancer gene expression datasets. They combined the statistical power of multiple genomic studies while masking their variability and batch effects to identify robust early diagnostic biomarkers of pancreatic cancer.
The investigators established a panel comprising the genes TMPRSS4 (Transmembrane protease, serine 4), AHNAK2 (AHNAK nucleoprotein 2), POSTN (Periostin), ECT2 (Epithelial cell transforming 2), and SERPINB5 (Serpin peptidase inhibitor, clade B (ovalbumin), member 5) that achieved on average 95% sensitivity and 89% specificity in discriminating pancreatic ductal adenocarcinoma (PDAC) from non-tumor samples in four training sets and similar performance in five independent validation datasets. The five-gene classifier accurately discriminated PDAC from chronic pancreatitis, other cancers, and non-tumor samples from PDAC precursors in three independent datasets.
PDAC-specific expression of the biomarker panel was measured by qRT-PCR (qualitative real-time PCR) in microdissected patient-derived FFPE (formalin-fixed, paraffin-embedded) tissues. Cell-based assays were then used to assess the impact of two of the biomarkers, TMPRSS4 and ECT2, on PDAC cells.
Results revealed that knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability, and TMPRSS4 knockdown also blocked PDAC migration and invasion.
“Pancreatic cancer is a devastating disease with a death rate close to the incidence rate,” said senior author Dr. Towia Libermann, professor of medicine at Beth Israel Deaconess Medical Center. “Because more than 90% of pancreatic cancer cases are diagnosed at the metastatic stage, when there are only limited therapeutic options, earlier diagnosis is anticipated to have a major impact on extending life expectancy for patients. There has been a lack of reliable markers, early indicators, and risk factors associated with pancreatic cancer, but this new way of differentiating between healthy and malignant tissue offers hope for earlier diagnosis and treatment.”
“Because these five genes are turned on so early in the development of pancreatic cancer, they may play roles as drivers of this disease and may be exciting targets for therapies,” said Dr. Libermann. “Moving forward, we will explore the potential to convert this tissue-based diagnostic into a noninvasive blood or urine test.”
The study was published in the March 16, 2016, online edition of the journal Oncotarget.
Related Links:
Beth Israel Deaconess Medical Center
Latest Pathology News
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
- New Software Tool Improves Analysis of Complex Spatial Data from Tissues
- AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
- New Tool Could Revolutionize Acute Leukemia Diagnosis
- New Microscope Promises to Speed Up Medical Diagnostics
- ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours
- Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
- Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
- Mobile-Compatible AI-Powered System to Revolutionize Malaria Diagnosis
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Blood Test Uses Cell-Free DNA to Detect ALS Faster and More Accurately
Diagnosing amyotrophic lateral sclerosis (ALS), a rare and fatal neurodegenerative disease, is often a lengthy and complex process, as its early symptoms can mimic other neurological conditions.... Read more
Multi-Cancer Early Detection Blood Test Increases Cancer Detection
Cancer is the second leading cause of death worldwide as most deadly cancers are found too late. Approximately 70% of cancer deaths come from cancers that do not have standard-of-care screening and are... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read moreTechnology
view channel
Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Globally, over 300 million people live with Hepatitis B and C, and 40 million with HIV, according to WHO estimates. Diagnosing bloodborne viruses such as HIV and Hepatitis B and C remains challenging in... Read more
Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read moreIndustry
view channel
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







