Blood Test Detects Chronic Traumatic Encephalopathy During Life
By LabMedica International staff writers Posted on 22 Mar 2016 |

Image: The NanoSight LM10 instrument provides an easy-to-use, reproducible platform for nanoparticle characterization (Photo courtesy of Malvern Instruments).
Chronic traumatic encephalopathy (CTE) is a tauopathy associated with prior exposure to repetitive head impacts, such as those incurred through American football and other collision sports and diagnosis is made through neuropathological examination.
A method has been developed for measuring plasma exosomal tau. Exosomes are very small vesicles that are released from all types of cells throughout the body, including brain cells. They can be isolated in all body fluids, including plasma, a component of blood.
Scientists at Boston University School of Medicine (MA, USA) and their colleagues examined 78 former National Football League (NFL) players and a control group of 17 former non-contact sport athletes. Extracellular vesicles were isolated from plasma. Fluorescent nanoparticle tracking analysis was used to determine the number of vesicles staining positive for tau. Blood was drawn by venipuncture and immediately processed. Plasma samples were stored in 0.75 mL tubes at -80 °C, packed in dry ice, and shipped overnight in one batch to the Exosome Sciences laboratory (Monmouth Junction, NJ, USA).
Extracellular vesicles were isolated from the plasma samples by size exclusion chromatography. Plasma samples were applied to the column and it was then run isocratically. The elution was monitored at 280 nm and the void volume material (exosome fraction) was collected and pooled. The size profiles and concentrations of the chromatographically isolated exosomes were performed using the Nanosight LM10 instrument (Malvern Instruments Ltd.; Malvern, UK) equipped with a 405 nm laser, a scientific complementary metal-oxide-semiconductor (sCMOS) camera and Nanoparticle Tracking Analysis (NTA) software.
The method of measuring plasma exosomal tau is referred to as a TauSome. The groups did not differ in total plasma exosomes, but the NFL group had significantly higher plasma exosomal tau than the control group. The C-statistic is maximized when the plasma exosomal tau level is set to 0. Using 0 as a threshold resulted in 82% sensitivity, 100% specificity, 100% positive predictive value and 53% negative predictive value. The number of tau-positive plasma exosomes was significantly correlated with performance on standardized tests of memory and psychomotor speed; the higher the TauSome level, the worse the performance.
Jim Joyce, Founder of Exosome Sciences and Chairman and CEO of Aethlon Medical (San Diego, CA, USA), said, “We are extremely pleased that our initial study data has been published and we appreciate forthcoming opportunities to further advance our TauSome biomarker as a noninvasive solution to detect and monitor CTE in living individuals.” The study was published on February 10, 2016, in the Journal of Alzheimer's Disease.
Related Links:
Boston University School of Medicine
Exosome Sciences
Malvern Instruments Ltd.
A method has been developed for measuring plasma exosomal tau. Exosomes are very small vesicles that are released from all types of cells throughout the body, including brain cells. They can be isolated in all body fluids, including plasma, a component of blood.
Scientists at Boston University School of Medicine (MA, USA) and their colleagues examined 78 former National Football League (NFL) players and a control group of 17 former non-contact sport athletes. Extracellular vesicles were isolated from plasma. Fluorescent nanoparticle tracking analysis was used to determine the number of vesicles staining positive for tau. Blood was drawn by venipuncture and immediately processed. Plasma samples were stored in 0.75 mL tubes at -80 °C, packed in dry ice, and shipped overnight in one batch to the Exosome Sciences laboratory (Monmouth Junction, NJ, USA).
Extracellular vesicles were isolated from the plasma samples by size exclusion chromatography. Plasma samples were applied to the column and it was then run isocratically. The elution was monitored at 280 nm and the void volume material (exosome fraction) was collected and pooled. The size profiles and concentrations of the chromatographically isolated exosomes were performed using the Nanosight LM10 instrument (Malvern Instruments Ltd.; Malvern, UK) equipped with a 405 nm laser, a scientific complementary metal-oxide-semiconductor (sCMOS) camera and Nanoparticle Tracking Analysis (NTA) software.
The method of measuring plasma exosomal tau is referred to as a TauSome. The groups did not differ in total plasma exosomes, but the NFL group had significantly higher plasma exosomal tau than the control group. The C-statistic is maximized when the plasma exosomal tau level is set to 0. Using 0 as a threshold resulted in 82% sensitivity, 100% specificity, 100% positive predictive value and 53% negative predictive value. The number of tau-positive plasma exosomes was significantly correlated with performance on standardized tests of memory and psychomotor speed; the higher the TauSome level, the worse the performance.
Jim Joyce, Founder of Exosome Sciences and Chairman and CEO of Aethlon Medical (San Diego, CA, USA), said, “We are extremely pleased that our initial study data has been published and we appreciate forthcoming opportunities to further advance our TauSome biomarker as a noninvasive solution to detect and monitor CTE in living individuals.” The study was published on February 10, 2016, in the Journal of Alzheimer's Disease.
Related Links:
Boston University School of Medicine
Exosome Sciences
Malvern Instruments Ltd.
Latest Clinical Chem. News
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
- Prostate Cancer Markers Based on Chemical Make-Up of Calcifications to Speed Up Detection
- Breath Test Could Help Detect Blood Cancers
- ML-Powered Gas Sensors to Detect Pathogens and AMR at POC
- Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation
- Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
- Simple Urine Test Could Detect Multiple Cancers at Early Stage
- Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules
- First-Of-Its-Kind Quantitative Method Assesses Opioid Exposure in Newborns
- Paper-Based Devices Outperform Existing Methods in Diagnosing Asymptomatic Malaria
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
New DNA Methylation-Based Method Predicts Cancer Progression
Cancer often develops silently for years before diagnosis, making it difficult to trace its origins and predict its progression. Traditional approaches to studying cancer evolution have lacked the precision... Read more
Urine Test Could Predict Outcome of Cartilage Transplant Surgery
Cartilage transplant surgery provides an alternative to artificial joint replacements by using donor tissue to restore knee function. While many patients benefit, outcomes can vary, leaving uncertainty... Read more
2-Hour Cancer Blood Test to Transform Tumor Detection
Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more
Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
Alzheimer’s disease and other neurodegenerative disorders remain difficult to diagnose and monitor accurately due to limitations in existing biomarkers. Traditional tau and phosphorylated tau measurements... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more