We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Immunoassay Developed to Diagnose Dengue

By LabMedica International staff writers
Posted on 17 Jan 2016
Image: Novel Immunoassay for Dengue virus (Photo courtesy of Fraunhofer IZI).
Image: Novel Immunoassay for Dengue virus (Photo courtesy of Fraunhofer IZI).
Image: The immature dengue viral particle. Notable are the 60 protein “spikes” which jut from the surface, making the immature particle far less smooth than the mature form (Photo courtesy of Purdue University).
Image: The immature dengue viral particle. Notable are the 60 protein “spikes” which jut from the surface, making the immature particle far less smooth than the mature form (Photo courtesy of Purdue University).
Until now, it has been difficult to diagnose whether someone is suffering from dengue fever or whether they have contracted another flavivirus, such as yellow fever, West Nile virus, or Tick-borne encephalitis virus (TBEV).

Although there are already tests on the market, but none of them can tell the difference between these individual flaviviruses and if a definitive diagnosis is required, a sample of the patient's blood has to be sent to a high-security laboratory for analysis.

Scientists at the Fraunhofer Institute for Cell Therapy and Immunology (Leipzig, Germany) have developed a definitive antibody test for Dengue virus. Conventional antibody tests are performed by the health professional who draws the patient's blood. If infected with the Dengue virus, the blood will contain specific antibodies produced by the body to attack the intruder. The laboratory staffer then applies the blood to a test platform with dengue antigens that systematically bind with these antibodies. If, after a set reaction time, antibodies are found on the platform, the physician will assume that the patient has been infected with the Dengue virus. The catch is that, although the antigens bind with the antibodies according to the lock and key principle, they almost always do so at the same site as all other flaviviruses. This means that, even when the test is positive, no one can say for sure that it is actually a case of dengue.

The scientists hope that their test will hit the market around one year from now. In a further step, they are working on ways to differentiate between the four strains of the dengue pathogen. This could be an important breakthrough: Anyone who has survived a dengue-related illness has then acquired immunity against that specific pathogen, but when it comes to the other three strains, that person is at even greater risk. This is because the antibodies they produced to combat the first bout of dengue fever actually help the new virus to spread and make it much harder for that person to recover.

Dr. Sebastian Ulbert, Head of the Working Group on Vaccine Technologies, said, “We've succeeded in developing the first ever antibody test for dengue infections that is capable of distinguishing between dengue and other flaviviruses. Since our test is also based on detecting antibodies, it's just as cheap and easy to run as its conventional counterparts. Our test system has the potential to differentiate between the four viral strains.” The new method can easily be integrated into existing test setups and at no extra cost to manufacturers.

Related Links:

Fraunhofer Institute for Cell Therapy and Immunology  


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Gold Member
Hematology Analyzer
Medonic M32B

Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more