First Lab-in-a-Briefcase to Boost Global Early Diagnosis of Cancer
By LabMedica International staff writers Posted on 18 Nov 2015 |

Image: The 4 main components of the newly developed “lab-in-a-briefcase.” (1) Disposable multiple syringe aspirator (MSA) devices, each of which can perform 10 replicate ELISA tests on each of the 8 samples. (2) Customized microwell plates preloaded with reagents that interface with the MSA. (3) Portable USB-powered film scanner for colorimetric signal quantification. (4) Portable computer for real-time data analysis (Photo courtesy of Barbosa AI et al., 2015, and the journal Lab on a Chip.)
To help boost early cancer detection rates worldwide, scientists have developed an all-in-one portable mini-laboratory for point-of-care cancer screening, rapid detection, and monitoring. The prototype successfully tested for prostate cancer, and can operate at even at high temperatures often found in remote areas without air-conditioned clinics.
An estimated 70% of the world’s cancer deaths occur in Africa, Asia, and Central and South America. The lab-in-a-briefcase, believed to be a first-of-its-kind, was developed by a team from Loughborough University (Leicestershire, UK) and Capillary Film Technology, Ltd. (West Sussex,UK), led by Dr. Nuno Reis, lecturer in chemical engineering, Loughborough University.
One of the system’s remarkable features is the use whole blood without the need for sample preparation, which has been a challenging task for settings outside of a central laboratory. This also provides improved safety by minimizing the handling of blood samples from patients that may have infectious diseases.
The compact system, a complete miniaturized ELISA platform, comprises of 4 main components: a manually driven multi-syringe aspirator capable of performing up to 80 simultaneous tests from whole blood samples; microwell ELISA plates pre-loaded with assay reagents; a portable USB-powered film scanner to image test-strips; and a portable computer for real-time data analysis.
The easy-to-use, semi-automated system requires only one operator with minimal training to conduct the test within 15 minutes – with no need for additional equipment or instruments.
A new affordable, disposable microfluidic test-strip—comprising of tiny capillary tubes about the width of a human hair—is used specifically for quick measurement of different cancer biomarkers in a whole blood sample. This technology, which operates like a pregnancy test, has already been used successfully in a separate study led by Dr. Reis that detected prostate cancer with the help of a smartphone camera. The new, lab-in-a-briefcase study also focused on detecting prostate cancer (by testing for the PSA [prostate-specific antigen] biomarker); however the microfluidic test-strip is versatile enough to measure several cancer biomarkers simultaneously from a single sample.
“Our lab-in-a-briefcase is both inexpensive and simple to use; it means that high-precision diagnostic kits, complete with clinical laboratory equipment, can be made accessible to remote populations, and this is what makes it a truly life-changing concept for the screening and monitoring of different types of cancer,” said
Dr. Reis, “This portable lab can really make a difference, boosting levels of cancer detection in developing countries where ordinarily people would not have such easy access to early diagnostics. I envisage that our lab-in-a-briefcase could also be developed further in the future to allow for rapid testing of infectious diseases and allergens.”
The study, by Barbosa AI et al, was published in June, 2015, in the journal Lab on a Chip.
Related Links:
Loughborough University
Capillary Film Technology
An estimated 70% of the world’s cancer deaths occur in Africa, Asia, and Central and South America. The lab-in-a-briefcase, believed to be a first-of-its-kind, was developed by a team from Loughborough University (Leicestershire, UK) and Capillary Film Technology, Ltd. (West Sussex,UK), led by Dr. Nuno Reis, lecturer in chemical engineering, Loughborough University.
One of the system’s remarkable features is the use whole blood without the need for sample preparation, which has been a challenging task for settings outside of a central laboratory. This also provides improved safety by minimizing the handling of blood samples from patients that may have infectious diseases.
The compact system, a complete miniaturized ELISA platform, comprises of 4 main components: a manually driven multi-syringe aspirator capable of performing up to 80 simultaneous tests from whole blood samples; microwell ELISA plates pre-loaded with assay reagents; a portable USB-powered film scanner to image test-strips; and a portable computer for real-time data analysis.
The easy-to-use, semi-automated system requires only one operator with minimal training to conduct the test within 15 minutes – with no need for additional equipment or instruments.
A new affordable, disposable microfluidic test-strip—comprising of tiny capillary tubes about the width of a human hair—is used specifically for quick measurement of different cancer biomarkers in a whole blood sample. This technology, which operates like a pregnancy test, has already been used successfully in a separate study led by Dr. Reis that detected prostate cancer with the help of a smartphone camera. The new, lab-in-a-briefcase study also focused on detecting prostate cancer (by testing for the PSA [prostate-specific antigen] biomarker); however the microfluidic test-strip is versatile enough to measure several cancer biomarkers simultaneously from a single sample.
“Our lab-in-a-briefcase is both inexpensive and simple to use; it means that high-precision diagnostic kits, complete with clinical laboratory equipment, can be made accessible to remote populations, and this is what makes it a truly life-changing concept for the screening and monitoring of different types of cancer,” said
Dr. Reis, “This portable lab can really make a difference, boosting levels of cancer detection in developing countries where ordinarily people would not have such easy access to early diagnostics. I envisage that our lab-in-a-briefcase could also be developed further in the future to allow for rapid testing of infectious diseases and allergens.”
The study, by Barbosa AI et al, was published in June, 2015, in the journal Lab on a Chip.
Related Links:
Loughborough University
Capillary Film Technology
Latest Technology News
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
- Paper-Based Biosensor System to Detect Glucose Using Sweat Could Revolutionize Diabetes Management
- First AI-Powered Blood Test Identifies Patients in Earliest Stage of Breast Cancer
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. There is a growing need to identify this risk from birth... Read more
Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. However, by this time, the brain has already undergone... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more