New Virus Identified in Blood Supply
By LabMedica International staff writers Posted on 30 Sep 2015 |

Image: The HiSeq 2500 sequencing platform (Photo courtesy of Illumina).
Transfusion of blood or blood-derived products can save lives and improve health but requires safety measures for preventing bystander transmission of infectious agents.
To investigate the transmission of novel infectious agents by blood transfusion, changes in the virome composition of blood transfusion recipients pre- and post-transfusion has been studied.
An international group of scientists led by those at Columbia University (New York, NY, USA) collected serum samples from four participating blood centers distributed across the USA from July 1974 through June 1980. They performed high-throughput sequencing on blood samples from 46 individuals in the in the Transfusion-Transmitted Viruses Study (TTVS). They also performed high-throughput sequencing on samples from 106 individuals in the Multicenter Hemophilia Cohort Study who received plasma-derived clotting factor concentrates.
Total ribonucleic acid (RNA) extracts were reverse transcribed using a SuperScript III kit (Invitrogen Life Technologies; Carlsbad, CA, USA) with random hexamer primers. After processing, samples with low concentrations were amplified by increasing polymerase chain reaction (PCR) cycle numbers from 9 to 14. All sequencing was done on the Illumina HiSeq 2500 platform (Illumina; San Diego, CA, USA), yielding an average of 150 million reads per sequencing lane.
The team analyzed samples both pre- and post-transfusion and along with a variety of known viruses, they identified a new virus in two individuals. The virus was only present in post-transfusion samples, and additional tests showed that both patients were able to clear the virus. Genetic analysis determined that the novel human virus, human hepegivirus 1 (HHpgV-1) was related to Hepatitis C virus (HCV) and human Pegivirus (HPgV; formerly called GB virus C or Hepatitis G virus). Genomic testing of 70 additional individuals in the TTVS study failed to detect further cases of the virus detected. HHpgV-1 was found in serum samples from two blood transfusion recipients and two hemophilia patients who had received plasma-derived clotting factor concentrates.
Amit Kapoor, PhD, an assistant professor and lead author of the study said, “HHpgV-1 is unique because it shares genetic similarity with both highly pathogenic HCV and the apparently non-pathogenic HPgV. People need to be aware of this new infection in humans. We just don't know how many viruses are transmitted through the blood supply. There are so many viruses out there, and they need to be characterized in order to ensure that transfusions are safe.” The study was published on September 22, 2015, in the journal mBio.
Related Links:
Columbia University
Invitrogen Life Technologies
Illumina
To investigate the transmission of novel infectious agents by blood transfusion, changes in the virome composition of blood transfusion recipients pre- and post-transfusion has been studied.
An international group of scientists led by those at Columbia University (New York, NY, USA) collected serum samples from four participating blood centers distributed across the USA from July 1974 through June 1980. They performed high-throughput sequencing on blood samples from 46 individuals in the in the Transfusion-Transmitted Viruses Study (TTVS). They also performed high-throughput sequencing on samples from 106 individuals in the Multicenter Hemophilia Cohort Study who received plasma-derived clotting factor concentrates.
Total ribonucleic acid (RNA) extracts were reverse transcribed using a SuperScript III kit (Invitrogen Life Technologies; Carlsbad, CA, USA) with random hexamer primers. After processing, samples with low concentrations were amplified by increasing polymerase chain reaction (PCR) cycle numbers from 9 to 14. All sequencing was done on the Illumina HiSeq 2500 platform (Illumina; San Diego, CA, USA), yielding an average of 150 million reads per sequencing lane.
The team analyzed samples both pre- and post-transfusion and along with a variety of known viruses, they identified a new virus in two individuals. The virus was only present in post-transfusion samples, and additional tests showed that both patients were able to clear the virus. Genetic analysis determined that the novel human virus, human hepegivirus 1 (HHpgV-1) was related to Hepatitis C virus (HCV) and human Pegivirus (HPgV; formerly called GB virus C or Hepatitis G virus). Genomic testing of 70 additional individuals in the TTVS study failed to detect further cases of the virus detected. HHpgV-1 was found in serum samples from two blood transfusion recipients and two hemophilia patients who had received plasma-derived clotting factor concentrates.
Amit Kapoor, PhD, an assistant professor and lead author of the study said, “HHpgV-1 is unique because it shares genetic similarity with both highly pathogenic HCV and the apparently non-pathogenic HPgV. People need to be aware of this new infection in humans. We just don't know how many viruses are transmitted through the blood supply. There are so many viruses out there, and they need to be characterized in order to ensure that transfusions are safe.” The study was published on September 22, 2015, in the journal mBio.
Related Links:
Columbia University
Invitrogen Life Technologies
Illumina
Latest Molecular Diagnostics News
- DNA Methylation Signatures of Aging Could Help Assess Mortality Risk
- Molecular Diagnostics System Provides Lab-Quality Results at POC
- Cellular Signature Identifies Patients with Treatment Resistant Prostate Tumors
- MCED Could Be Valuable Supplement to Traditional Cancer Screening Approaches
- Newly-Cleared Technology a Game Changer for Diagnosis of Lyme Disease
- Innovative Liquid Biopsy Test Uses RNA to Detect Early-Stage Cancer
- Rapid Tests for Chagas Disease Improves Diagnostic Access
- Simple Blood Test to Predict Alzheimer’s Clinical Progression in Earliest Stages
- Saliva Test Could Identify People Genetically Susceptible to Type 2 Diabetes
- Pioneering Analyzer with Advanced Biochip Technology Sets New Standard in Lab Diagnostics
- RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
- New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
- Injury Molecular Fingerprint Enables Real-Time Diagnostics for On-Site Treatment
- Blood Test Could Predict Likelihood of Breast Cancer Spreading to The Bone
- New Infectious Disease Analytics Platform Speeds Up Clinical Decision-Making at POC
- Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
DNA Methylation Signatures of Aging Could Help Assess Mortality Risk
Aging is associated with the progressive degeneration and loss of function across multiple physiological systems. Chronological age is the most common indicator of aging; however, there is significant... Read more
Molecular Diagnostics System Provides Lab-Quality Results at POC
Currently, there is a need for a comprehensive molecular diagnostics ecosystem that enables effective diagnostic stewardship, providing the diagnostic tools to offer the right tests, for the right patient,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read morePathology
view channel
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more