We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Panel of Bloodstream MicroRNAs Predicts Damage from Radiation Exposure

By LabMedica International staff writers
Posted on 25 May 2015
Print article
A panel of microRNAs (miRNAs) that can be measured in blood samples is able to predict the extent of long-term radiation injury and likelihood of survival following exposure to high doses of radiation.

Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after exposure to high levels of radiation.

Investigators at Dana-Farber Cancer Institute (Boston, MA, USA) have identified serum miRNA signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure.

MiRNAs comprise a family of small noncoding 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer. MiRNAs are made in cells, but some may be detected in the bloodstream.

The investigators systematically assessed the impact of TBI on the bone marrow's blood-cell production system to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. In addition, they found that 68 of 170 miRNAs detected in blood serum changed with radiation exposure. This number was reduced to a panel that acted as a "signature" of radiation dose.

The investigators reported that mice exposed to sub-lethal (6.5 Gy) and lethal (8.0 Gy) doses of radiation were physically indistinguishable for three to four weeks after exposure. In contrast, a serum miRNA signature was detectable 24 hours after radiation exposure that consistently differentiated these two populations.

By using a radioprotective agent before exposure or radiation mitigation after lethal radiation, the investigators determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Finally, using humanized mice that had been engrafted with human CD34+ HSCs, they determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells.

"After a radiation release, there is currently no way to tell who was exposed and who was not, and if someone was exposed, is it lethal or not?" said senior author Dr. Dipanjan Chowdhury, a principal investigator in radiation oncology at Dana-Farber Cancer Institute. "Drugs that can limit bone marrow damage are available but, to be effective, must be given before the appearance of radiation symptoms."

The paper was published in the May 13, 2015, online edition of the journal Science Translational Medicine.

Related Links:

Dana-Farber Cancer Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more