Ovarian Cancer Screening Technique Doubles Detection Rates
By LabMedica International staff writers Posted on 18 May 2015 |

Image: Histopathology of a Brenner tumor, a type of surface epithelial-stromal tumor, which may be benign or malignant, depending on whether the tumor cells invade the surrounding ovarian tissue (Photo courtesy of Nephron).
A risk algorithm using serial biomarker measurements doubles the number of screen-detected ovarian cancers compared to a single threshold rule.
The new screening method involves the interpretation of changes in levels a specific protein associated with ovarian cancer, in women's blood. The conventional ovarian cancer screening method uses a fixed "cut-off" point for the specific protein, meaning that the new method is able to predict a woman's individual risk of developing cancer with greater accuracy.
Scientists at University College London (UK) and their colleagues studied a total of 202,638 post-menopausal women aged 50 and over participated in United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), and were randomly assigned to receive either annual multimodal screening, transvaginal ultrasound or no test at all. They followed up followed up 46,237 women who continued to receive annual multimodal screening. Each participant would have their carcinoma antigen 125 (CA125) levels tested annually over the course of 14 years.
The scientists calculated their risk of ovarian cancer according to the woman's age, their original CA125 levels and how those levels had changed over time. The risk of ovarian cancer was then estimated by comparing the serial pattern with known cases of cancer and controls. Within the group of women receiving multimodal screening, 640 had surgery for suspected cancer. Of these, 133 had invasive epithelial ovarian cancers. Another 22 women were diagnosed with epithelial ovarian cancer within one year of their final annual screen. The team found that found that the new method detected cancer in 86% of women with invasive epithelial ovarian cancer compared with conventional methods used in prior trials or clinical practice that could identify only 41% and 48% respectively. Encouragingly, it ruled out almost 100% of women who were cancer-free. This means these women would not undergo unnecessary further investigation and surgery.
Ian J. Jacobs BA, MA, MBBS, MD, FRCOG, a professor at the University of New South Wales (Sydney, Australia) explained: “CA125 as a biological marker for ovarian cancer has been called into question. Our findings indicate that this can be an accurate and sensitive screening tool, when used in the context of a woman's pattern of CA125 over time. What's normal for one woman may not be so for another. It is the change in levels of this protein that's important.” The study was published on May 4, 2015, in the Journal of Clinical Oncology.
Related Links:
University College London
University of New South Wales
The new screening method involves the interpretation of changes in levels a specific protein associated with ovarian cancer, in women's blood. The conventional ovarian cancer screening method uses a fixed "cut-off" point for the specific protein, meaning that the new method is able to predict a woman's individual risk of developing cancer with greater accuracy.
Scientists at University College London (UK) and their colleagues studied a total of 202,638 post-menopausal women aged 50 and over participated in United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), and were randomly assigned to receive either annual multimodal screening, transvaginal ultrasound or no test at all. They followed up followed up 46,237 women who continued to receive annual multimodal screening. Each participant would have their carcinoma antigen 125 (CA125) levels tested annually over the course of 14 years.
The scientists calculated their risk of ovarian cancer according to the woman's age, their original CA125 levels and how those levels had changed over time. The risk of ovarian cancer was then estimated by comparing the serial pattern with known cases of cancer and controls. Within the group of women receiving multimodal screening, 640 had surgery for suspected cancer. Of these, 133 had invasive epithelial ovarian cancers. Another 22 women were diagnosed with epithelial ovarian cancer within one year of their final annual screen. The team found that found that the new method detected cancer in 86% of women with invasive epithelial ovarian cancer compared with conventional methods used in prior trials or clinical practice that could identify only 41% and 48% respectively. Encouragingly, it ruled out almost 100% of women who were cancer-free. This means these women would not undergo unnecessary further investigation and surgery.
Ian J. Jacobs BA, MA, MBBS, MD, FRCOG, a professor at the University of New South Wales (Sydney, Australia) explained: “CA125 as a biological marker for ovarian cancer has been called into question. Our findings indicate that this can be an accurate and sensitive screening tool, when used in the context of a woman's pattern of CA125 over time. What's normal for one woman may not be so for another. It is the change in levels of this protein that's important.” The study was published on May 4, 2015, in the Journal of Clinical Oncology.
Related Links:
University College London
University of New South Wales
Latest Clinical Chem. News
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
- Simple Urine Test Could Detect Multiple Cancers at Early Stage
- Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules
- First-Of-Its-Kind Quantitative Method Assesses Opioid Exposure in Newborns
- Paper-Based Devices Outperform Existing Methods in Diagnosing Asymptomatic Malaria
- Simple Skin Test Could Revolutionize Diagnosis of Pediatric Eosinophilic Esophagitis
- Portable Diagnostic Tool Uses Bioluminescence to Detect Viruses at POC
- AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress
- AI-Powered Blood Test Accurately Detects Ovarian Cancer
- Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
- Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
DNA Methylation Signatures of Aging Could Help Assess Mortality Risk
Aging is associated with the progressive degeneration and loss of function across multiple physiological systems. Chronological age is the most common indicator of aging; however, there is significant... Read more
Molecular Diagnostics System Provides Lab-Quality Results at POC
Currently, there is a need for a comprehensive molecular diagnostics ecosystem that enables effective diagnostic stewardship, providing the diagnostic tools to offer the right tests, for the right patient,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more