Second Protein Identified for Common Kidney Failure
|
By LabMedica International staff writers Posted on 01 Dec 2014 |

Image: Diagram of pathological changes in a glomerulus (visible via electron microscopy) in membranous nephropathy. Black - immune complex; Dark Purple - basement membrane; Pink – endothelium; Green - visceral epithelium; Light Purple - mesangial cells (Photo by M. Komorniczak and Huckfinne, courtesy of Wikimedia).

Image: Very high magnification micrograph of membranous nephropathy (also membranous glomerulonephritis). Jones stain of kidney biopsy. The characteristic feature on light microscopy is basement membrane thickening/spike formation (best seen with silver stains). On electron microscopy, subepithelial deposits are also seen (Photo by Nephron, courtesy of Wikimedia).
An international team of researchers has found a second protein, THSD7A, associated with a common form of kidney failure—the autoimmune “membranous nephropathy” (MN). The discovery is likely to provide an important new biomarker for the disease.
MN occurs when kidney small blood vessels that filter wastes from blood are damaged by circulating autoantibodies. Proteins leak from the damaged blood vessels into the urine. For many people, loss of these proteins eventually leads to nephrotic syndrome. Unchecked, MN can lead to kidney failure or end-stage renal disease (ESRD). Approximately 14% of ESRD is associated with glomerulonephritis, of which MN is a common form.
As the second protein associated with MN and autoimmune response, THSD7A can be used to develop a new blood test. The research team previously discovered phospholipase A2 receptor 1 (PLA2R1) as the protein target of autoantibodies in up to 70% of people suffering from MN. However, the target antigen in the remaining 30% of patients remained unknown. Senior author Gérard Lambeau, PhD, said that the discovery is of THSD7A “and the corresponding anti-THSD7A autoantibodies in a group of about 10% of MN patients who did not have anti-PLA2R1 autoantibodies.” This finding thus identifies a distinct subgroup of MN patients with anti-THSD7A as a likely biomarker.
“The discovery of this second antigen-antibody system in MN will allow clinicians to diagnose this new form of primary (autoimmune) MN and provides a new method to monitor the disease activity in this subgroup of patients,” said co-lead authors Nicola Tomas, MD, and Laurence Beck, MD, PhD. Coauthor Jon Klein, MD, PhD, said, “The team has now found another protein that impacts additional patients with MN. Once a blood test is available, we will have additional tools to follow the response to treatment and possibly reduce the number of kidney biopsies necessary for disease detection.”
“Our discovery of PLA2R1 as the target of autoantibodies energized research and accelerated the pace of discovery in this uncommon but serious cause of kidney disease,” said David Salant, MD, “Hopefully, our current findings will spur further research to identify the target antigen to benefit the remaining 20% of patients with MN.”
“This discovery also represents an excellent example of international collaboration, with the decision to combine the independent discoveries of this target antigen by groups on both sides of the Atlantic into a jointly authored manuscript,” emphasized Dr. Beck and Prof. Rolf Stahl. The team consisted of researchers from France, Germany, and the USA.
The study, by Tomas NM, Beck L, et al., was published online ahead of print November 13, 2014, in the New England Journal of Medicine. It was also presented at the American Society of Nephrology (ASN) (Washington DC, USA) Kidney Week 2014 (November 11–16, Philadelphia, PA, USA; Abstract TH-OR071).
Related Links:
American Society of Nephrology (ASN)
MN occurs when kidney small blood vessels that filter wastes from blood are damaged by circulating autoantibodies. Proteins leak from the damaged blood vessels into the urine. For many people, loss of these proteins eventually leads to nephrotic syndrome. Unchecked, MN can lead to kidney failure or end-stage renal disease (ESRD). Approximately 14% of ESRD is associated with glomerulonephritis, of which MN is a common form.
As the second protein associated with MN and autoimmune response, THSD7A can be used to develop a new blood test. The research team previously discovered phospholipase A2 receptor 1 (PLA2R1) as the protein target of autoantibodies in up to 70% of people suffering from MN. However, the target antigen in the remaining 30% of patients remained unknown. Senior author Gérard Lambeau, PhD, said that the discovery is of THSD7A “and the corresponding anti-THSD7A autoantibodies in a group of about 10% of MN patients who did not have anti-PLA2R1 autoantibodies.” This finding thus identifies a distinct subgroup of MN patients with anti-THSD7A as a likely biomarker.
“The discovery of this second antigen-antibody system in MN will allow clinicians to diagnose this new form of primary (autoimmune) MN and provides a new method to monitor the disease activity in this subgroup of patients,” said co-lead authors Nicola Tomas, MD, and Laurence Beck, MD, PhD. Coauthor Jon Klein, MD, PhD, said, “The team has now found another protein that impacts additional patients with MN. Once a blood test is available, we will have additional tools to follow the response to treatment and possibly reduce the number of kidney biopsies necessary for disease detection.”
“Our discovery of PLA2R1 as the target of autoantibodies energized research and accelerated the pace of discovery in this uncommon but serious cause of kidney disease,” said David Salant, MD, “Hopefully, our current findings will spur further research to identify the target antigen to benefit the remaining 20% of patients with MN.”
“This discovery also represents an excellent example of international collaboration, with the decision to combine the independent discoveries of this target antigen by groups on both sides of the Atlantic into a jointly authored manuscript,” emphasized Dr. Beck and Prof. Rolf Stahl. The team consisted of researchers from France, Germany, and the USA.
The study, by Tomas NM, Beck L, et al., was published online ahead of print November 13, 2014, in the New England Journal of Medicine. It was also presented at the American Society of Nephrology (ASN) (Washington DC, USA) Kidney Week 2014 (November 11–16, Philadelphia, PA, USA; Abstract TH-OR071).
Related Links:
American Society of Nephrology (ASN)
Latest Pathology News
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
- Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
- Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
- Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology
Accurately estimating how many people carry Alzheimer’s disease pathology has long been a challenge, as traditional methods rely on small, clinic-based samples rather than the general population.... Read more
Blood Test Could Predict Death Risk in World’s Most Common Inherited Heart Disease
Hypertrophic cardiomyopathy (HCM) is the world’s most common inherited heart condition and affects millions of people globally. While some patients live with few or no symptoms, others develop heart failure,... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
Genetics and AI Improve Diagnosis of Aortic Stenosis
Aortic stenosis is a progressive narrowing of the aortic valve that restricts blood flow from the heart and can be fatal if left untreated. There are currently no medical therapies that can prevent or... Read more
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







