Low Density Lipoprotein Apolipoprotein-B Assay Validated
By LabMedica International staff writers Posted on 19 Nov 2014 |
The relationship between apolipoprotein-B (Apo-B) concentration and the risk of developing cardiovascular disease (CVD) is more robust than the relationship between low density lipoprotein cholesterol (LDL-C) concentration and CVD.
It is however unknown if Apo-B or low density lipoprotein (LDL) particle number (LDL-P) has a stronger predictive ability for future CHD and this uncertainty may be due to the inability of current Apo-B assays to separate the contribution of very low-density lipoprotein particles (VLDL-P) from the total Apo-B concentration.
Scientists at the Dartmouth-Hitchcock Medical Center (Lebanon, NH, USA) obtained a total of 300 lithium heparinized patient plasma samples submitted for routine fasting lipid profile. The profile included total cholesterol, high density lipoprotein (HDL), triglycerides and calculated LDL cholesterol and was included for analysis via both the LDL Apo-B assay as well as a Direct LDL assay on a specific immunoassay analyzer.
The LDL Apo-B assay (Maine Standards Company; Windham, ME, USA) for use on the Roche Cobas 6000 analyzer (Indianapolis, IN, USA) is an immunoturbidometric assay employing a polyclonal antiserum against Apo-B. In order to accurately quantify only the Apo-B content on LDL particles, the patient samples are first automatically diluted via the instrument. The collaborating scientists at Maine Standards developed an automated immunoturbidimetric assay for the Cobas 6000 analyzer that specifically quantifies the Apo-B present on the surface of LDL particles.
The LDL Apo-B within-run imprecision was 2.3% at 62 mg/dL and 2.2% at 109 mg/dL. The within-laboratory imprecision was 9.7% at 57 mg/dl and 6.1% at 104 mg/dL. There was no strong linear relationship between the calculated or measured LDL cholesterol concentration and the measured LDL Apo-B concentration. The assay demonstrated laboratory acceptable precision, low limit of quantitation (LoQ) and a wide measurement range. This assay that specifically measures Apo-B on LDL particles demonstrated a positive correlation with LDL-C that is not unlike the relationship between LDL-C and total Apo-B.
The authors concluded that they had verified the relationship between the LDL Apo-B concentration and the LDL-particle assay. This precise and easy to use automated turbidimetric assay for use on the Roche Cobas 6000 analyzer may serve as either a low cost alternative to the high-complexity LDL-particle assay by nuclear magnetic resonance (NMR), or as a screen to identify which patients should have a follow up LDL-particle assessment performed in a reference laboratory. The study was published in the November 2014 issue of the journal Clinical Biochemistry.
Related Links:
Dartmouth-Hitchcock Medical Center
Maine Standards Company
Roche
It is however unknown if Apo-B or low density lipoprotein (LDL) particle number (LDL-P) has a stronger predictive ability for future CHD and this uncertainty may be due to the inability of current Apo-B assays to separate the contribution of very low-density lipoprotein particles (VLDL-P) from the total Apo-B concentration.
Scientists at the Dartmouth-Hitchcock Medical Center (Lebanon, NH, USA) obtained a total of 300 lithium heparinized patient plasma samples submitted for routine fasting lipid profile. The profile included total cholesterol, high density lipoprotein (HDL), triglycerides and calculated LDL cholesterol and was included for analysis via both the LDL Apo-B assay as well as a Direct LDL assay on a specific immunoassay analyzer.
The LDL Apo-B assay (Maine Standards Company; Windham, ME, USA) for use on the Roche Cobas 6000 analyzer (Indianapolis, IN, USA) is an immunoturbidometric assay employing a polyclonal antiserum against Apo-B. In order to accurately quantify only the Apo-B content on LDL particles, the patient samples are first automatically diluted via the instrument. The collaborating scientists at Maine Standards developed an automated immunoturbidimetric assay for the Cobas 6000 analyzer that specifically quantifies the Apo-B present on the surface of LDL particles.
The LDL Apo-B within-run imprecision was 2.3% at 62 mg/dL and 2.2% at 109 mg/dL. The within-laboratory imprecision was 9.7% at 57 mg/dl and 6.1% at 104 mg/dL. There was no strong linear relationship between the calculated or measured LDL cholesterol concentration and the measured LDL Apo-B concentration. The assay demonstrated laboratory acceptable precision, low limit of quantitation (LoQ) and a wide measurement range. This assay that specifically measures Apo-B on LDL particles demonstrated a positive correlation with LDL-C that is not unlike the relationship between LDL-C and total Apo-B.
The authors concluded that they had verified the relationship between the LDL Apo-B concentration and the LDL-particle assay. This precise and easy to use automated turbidimetric assay for use on the Roche Cobas 6000 analyzer may serve as either a low cost alternative to the high-complexity LDL-particle assay by nuclear magnetic resonance (NMR), or as a screen to identify which patients should have a follow up LDL-particle assessment performed in a reference laboratory. The study was published in the November 2014 issue of the journal Clinical Biochemistry.
Related Links:
Dartmouth-Hitchcock Medical Center
Maine Standards Company
Roche
Read the full article by registering today, it's FREE!

Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
- Free digital version edition of LabMedica International sent by email on regular basis
- Free print version of LabMedica International magazine (available only outside USA and Canada).
- Free and unlimited access to back issues of LabMedica International in digital format
- Free LabMedica International Newsletter sent every week containing the latest news
- Free breaking news sent via email
- Free access to Events Calendar
- Free access to LinkXpress new product services
- REGISTRATION IS FREE AND EASY!

Sign in: Registered website members
Sign in: Registered magazine subscribers
Latest Clinical Chem. News
- AI-Powered Blood Test Accurately Detects Ovarian Cancer
- Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
- Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
Channels
Molecular Diagnostics
view channel
Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD
Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more