We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Salivary Glucose Levels Measured by Biochip Sensor

By LabMedica International staff writers
Posted on 18 Jun 2014
Print article
Image: The schematic shows glucose molecules sliding along the biochip sensor surface illuminated by different colors. Change in light intensity transmitted through the slits of each plasmonic interferometer can be used to measure the glucose concentration in saliva (Photo courtesy of Domenico Pacifici, PhD).
Image: The schematic shows glucose molecules sliding along the biochip sensor surface illuminated by different colors. Change in light intensity transmitted through the slits of each plasmonic interferometer can be used to measure the glucose concentration in saliva (Photo courtesy of Domenico Pacifici, PhD).
A new biochip sensor has been developed that can selectively measure concentrations of glucose in a complex solution similar to human saliva.

The new chip makes use of a series of specific chemical reactions combined with plasmonic interferometry which is a means of detecting chemical signature of compounds using light. The device is sensitive enough to detect differences in glucose concentrations that amount to just a few thousand molecules in the sampled volume.

Scientists at Brown University (Providence, RI, USA) exploited the synergistic advantage of combining plasmonic interferometry with an enzyme-driven dye assay that yields an optical sensor capable of detecting glucose in saliva with high sensitivity and selectivity. The biochip is made from a 2.54 x 2.54-cm piece of quartz coated with a thin layer of silver. Etched in the silver are thousands of nanoscale interferometers, tiny slits with a groove on each side. The grooves measure 200 nm wide and the slit is 100 nm wide.

When a liquid is deposited on the chip, the light and the surface plasmon waves propagate through that liquid before they interfere with each other. That alters the interference patterns picked up by the detectors, depending on the chemical makeup of the liquid. The scientists added microfluidic channels to the chip to introduce two enzymes that react with glucose in a very specific way. The first enzyme, glucose oxidase, reacts with glucose to form a molecule of hydrogen peroxide. This molecule then reacts with the second enzyme, horseradish peroxidase, to generate a molecule called resorufin, which can absorb and emit red light, thus coloring the solution. The team could then tune the interferometers to look for the red resorufin molecules.

The team tested its combination of dye chemistry and plasmonic interferometry by looking for glucose in artificial saliva, a mixture of water, salts and enzymes that resembles the real human saliva. They found that they could detect resorufin in real time with great accuracy and specificity. They were able to detect changes in glucose concentration of 0.1 μM/L, which is 10 times the sensitivity that can be achieved by interferometers alone. The proposed device is highly sensitive and highly specific for glucose sensing in picoliter volumes, across the physiological range of glucose concentrations found in human saliva, which is 20 μM–240 μM.

Domenico Pacifici, PhD, an assistant professor of engineering, and who led the study, said, “We have demonstrated the sensitivity needed to measure glucose concentrations typical in saliva, which are typically 100 times lower than in blood. Now we are able to do this with extremely high specificity, which means that we can differentiate glucose from the background components of saliva.” The study was published in the June 2014 edition of the journal Nanophotonics.

Related Links:

Brown University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article

Channels

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more