Lethal Prion Protein Causes Neuronal Death
|
By LabMedica International staff writers Posted on 01 Mar 2012 |
A single prion protein that is at least 10 times more lethal than larger prion species has been identified that causes disease similar to mad cow disease.
The toxic form of abnormal prion protein, known as TPrP, triggered various forms of neuronal damage, including molecular signatures very similar to that seen in the brains of prion-infected animal with bovine spongiform encephalopathy (BSE).
Scientists at the Scripps Research Institute (Jupiter, FL, USA) found that the most lethal form of prion protein was a specific structure known as alpha-helical. This toxic single molecule or "monomer" tests the existing theory that neuronal damage is associated with the toxicity of prion protein aggregates called "oligomers."
A variety of techniques was used to provide fresh insights into prion diseases, such as BSE and a rare human form Creutzfeldt-Jakob disease. Furthermore, it opened the possibility that associated neurotoxic proteins may play a role in neurodegenerative disorders, such as Parkinson, and Alzheimer's diseases.
In prion disease, proteinaceous infectious particles (infectious prions), believed to be made up only of protein, are able to reproduce, even though they lack ribonucleic acid (RNA) and DNA. Usually, mammalian cells generate cellular prion protein (PrP), when infected with a prion disease; the abnormal protein converts the normal host prion protein into its disease form.
Corinne Lasmézas, PhD, the lead author and a professor at Scripps, said "By identifying a single molecule as the most toxic species of prion proteins, we've opened a new chapter in understanding how prion-induced neurodegeneration occurs. We didn't think we would find neuronal death from this toxic monomer so close to what normally happens in the disease state. Now we have a powerful tool to explore the mechanisms of neurodegeneration."
Professor Lasmézas added, "Until now, it was thought that oligomers of proteins are toxic in all these disease. Since we found for the first time that an abnormally folded monomer is highly toxic, it opens up the possibility that this might be true also for some other protein misfolding diseases as well." The study was published on February 7, 2012 in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
Scripps Research Institute
The toxic form of abnormal prion protein, known as TPrP, triggered various forms of neuronal damage, including molecular signatures very similar to that seen in the brains of prion-infected animal with bovine spongiform encephalopathy (BSE).
Scientists at the Scripps Research Institute (Jupiter, FL, USA) found that the most lethal form of prion protein was a specific structure known as alpha-helical. This toxic single molecule or "monomer" tests the existing theory that neuronal damage is associated with the toxicity of prion protein aggregates called "oligomers."
A variety of techniques was used to provide fresh insights into prion diseases, such as BSE and a rare human form Creutzfeldt-Jakob disease. Furthermore, it opened the possibility that associated neurotoxic proteins may play a role in neurodegenerative disorders, such as Parkinson, and Alzheimer's diseases.
In prion disease, proteinaceous infectious particles (infectious prions), believed to be made up only of protein, are able to reproduce, even though they lack ribonucleic acid (RNA) and DNA. Usually, mammalian cells generate cellular prion protein (PrP), when infected with a prion disease; the abnormal protein converts the normal host prion protein into its disease form.
Corinne Lasmézas, PhD, the lead author and a professor at Scripps, said "By identifying a single molecule as the most toxic species of prion proteins, we've opened a new chapter in understanding how prion-induced neurodegeneration occurs. We didn't think we would find neuronal death from this toxic monomer so close to what normally happens in the disease state. Now we have a powerful tool to explore the mechanisms of neurodegeneration."
Professor Lasmézas added, "Until now, it was thought that oligomers of proteins are toxic in all these disease. Since we found for the first time that an abnormally folded monomer is highly toxic, it opens up the possibility that this might be true also for some other protein misfolding diseases as well." The study was published on February 7, 2012 in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
Scripps Research Institute
Latest Microbiology News
- New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
- Breakthroughs in Microbial Analysis to Enhance Disease Prediction
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Sepsis Test Demonstrates Strong Performance in Post-Cardiac Surgery Patients
Sepsis is difficult to diagnose accurately in patients recovering from major surgery, as infection-related symptoms often overlap with non-infectious systemic inflammatory responses. This challenge is... Read more
Next-Gen Automated ELISA System Elevates Laboratory Performance
A next-generation automated ELISA system is designed to elevate laboratory performance through advanced workflow automation, enhanced connectivity, and a modernized user experience. DYNEX Technologies... Read more
At-Home Blood Tests Accurately Detect Key Alzheimer's Biomarkers
Diagnosing Alzheimer’s disease typically relies on brain scans or spinal fluid tests, which are invasive, costly, and difficult to access outside specialist clinics. These barriers have limited large-scale... Read more
Blood Test Combined with MRI Brain Scans Reveals Two Distinct Multiple Sclerosis Types
Multiple sclerosis (MS) affects more than 2.8 million people worldwide, yet predicting how the disease will progress in individual patients remains difficult. Current MS classifications are based on clinical... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read morePathology
view channel
ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
Urine drug testing plays a critical role in the emergency department, particularly for patients presenting with suspected overdose or altered mental status. Accurate and timely results can directly influence... Read more
New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
Ovarian cancer affects around one in 50 women during their lifetime, with roughly 7,000 diagnoses each year in the UK. The disease is often detected late because symptoms such as bloating, abdominal pain,... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







