Lethal Prion Protein Causes Neuronal Death
By LabMedica International staff writers Posted on 01 Mar 2012 |
A single prion protein that is at least 10 times more lethal than larger prion species has been identified that causes disease similar to mad cow disease.
The toxic form of abnormal prion protein, known as TPrP, triggered various forms of neuronal damage, including molecular signatures very similar to that seen in the brains of prion-infected animal with bovine spongiform encephalopathy (BSE).
Scientists at the Scripps Research Institute (Jupiter, FL, USA) found that the most lethal form of prion protein was a specific structure known as alpha-helical. This toxic single molecule or "monomer" tests the existing theory that neuronal damage is associated with the toxicity of prion protein aggregates called "oligomers."
A variety of techniques was used to provide fresh insights into prion diseases, such as BSE and a rare human form Creutzfeldt-Jakob disease. Furthermore, it opened the possibility that associated neurotoxic proteins may play a role in neurodegenerative disorders, such as Parkinson, and Alzheimer's diseases.
In prion disease, proteinaceous infectious particles (infectious prions), believed to be made up only of protein, are able to reproduce, even though they lack ribonucleic acid (RNA) and DNA. Usually, mammalian cells generate cellular prion protein (PrP), when infected with a prion disease; the abnormal protein converts the normal host prion protein into its disease form.
Corinne Lasmézas, PhD, the lead author and a professor at Scripps, said "By identifying a single molecule as the most toxic species of prion proteins, we've opened a new chapter in understanding how prion-induced neurodegeneration occurs. We didn't think we would find neuronal death from this toxic monomer so close to what normally happens in the disease state. Now we have a powerful tool to explore the mechanisms of neurodegeneration."
Professor Lasmézas added, "Until now, it was thought that oligomers of proteins are toxic in all these disease. Since we found for the first time that an abnormally folded monomer is highly toxic, it opens up the possibility that this might be true also for some other protein misfolding diseases as well." The study was published on February 7, 2012 in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
Scripps Research Institute
The toxic form of abnormal prion protein, known as TPrP, triggered various forms of neuronal damage, including molecular signatures very similar to that seen in the brains of prion-infected animal with bovine spongiform encephalopathy (BSE).
Scientists at the Scripps Research Institute (Jupiter, FL, USA) found that the most lethal form of prion protein was a specific structure known as alpha-helical. This toxic single molecule or "monomer" tests the existing theory that neuronal damage is associated with the toxicity of prion protein aggregates called "oligomers."
A variety of techniques was used to provide fresh insights into prion diseases, such as BSE and a rare human form Creutzfeldt-Jakob disease. Furthermore, it opened the possibility that associated neurotoxic proteins may play a role in neurodegenerative disorders, such as Parkinson, and Alzheimer's diseases.
In prion disease, proteinaceous infectious particles (infectious prions), believed to be made up only of protein, are able to reproduce, even though they lack ribonucleic acid (RNA) and DNA. Usually, mammalian cells generate cellular prion protein (PrP), when infected with a prion disease; the abnormal protein converts the normal host prion protein into its disease form.
Corinne Lasmézas, PhD, the lead author and a professor at Scripps, said "By identifying a single molecule as the most toxic species of prion proteins, we've opened a new chapter in understanding how prion-induced neurodegeneration occurs. We didn't think we would find neuronal death from this toxic monomer so close to what normally happens in the disease state. Now we have a powerful tool to explore the mechanisms of neurodegeneration."
Professor Lasmézas added, "Until now, it was thought that oligomers of proteins are toxic in all these disease. Since we found for the first time that an abnormally folded monomer is highly toxic, it opens up the possibility that this might be true also for some other protein misfolding diseases as well." The study was published on February 7, 2012 in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
Scripps Research Institute
Latest Microbiology News
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
- Blood Culture Assay Enhances Diagnostic Stewardship Through Targeted Panel Selection
- Real-Time Genome Sequencing Detects Dangerous Superbug Causing Hospital Infections
- Diagnostic Test Accurately Detects Colorectal Cancer by Identifying Microbial Signature in Gut Bacteria
- Rapid Bedside Test Predicts Sepsis with Over 90% Accuracy
- New Blood Test Detects Up to Five Infectious Diseases at POC
- Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
- New Test Diagnoses Bacterial Meningitis Quickly and Accurately
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
RNA Screening Test Could Detect Colon Polyps Before They Become Cancerous
Colorectal cancer has become a growing health crisis, especially as it increasingly affects younger adults in their 20s, 30s, and 40s, while screening rates remain low. Colorectal cancer is now the leading... Read more
New RT-LAMP Assay Offers Affordable and Reliable Pathogen Detection for Resource-Limited Settings
The high cost and logistical complexities associated with rapid, point-of-care tests have long hampered widespread access to molecular diagnostics, especially in low- and middle-income countries.... Read more
New Biomarker Panel to Enable Early Detection of Pancreatic Cancer
Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more
Ultrarapid Whole Genome Sequencing for Neonatal and Pediatric Patients Delivers Results In 48 Hours
Genetic diseases are the leading identifiable cause of infant mortality, and early diagnosis is crucial to improve patient outcomes. In the neonatal and pediatric intensive care units (NICU and PICU),... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read morePathology
view channel
Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels
Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more
New AI-Based Method Effectively Identifies Disease Phenotypes Using Light-Based Imaging
Precision medicine, where treatment strategies are tailored to a patient's unique disease characteristics, holds great promise for cancer therapy. However, identifying disease phenotypes, which are critical... Read more
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
BD Biosciences & Diagnostic Solutions to Merge with Waters
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) and Waters Corporation (Milford, MA, USA) have entered into a definitive agreement to combine BD's Biosciences & Diagnostic Solutions... Read more