We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Approach Yields Stable Neural Stem Cell Lines for Neuroscience Research

By LabMedica International staff writers
Posted on 27 Sep 2016
A team of neurosciences researchers developed a faster and more stable technique for establishing stable human induced neural stem cell (hiNSC) lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells.

Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation.

Image: Neuromuscular tissue engineering: hiNSCs (red) grown in co-culture with skeletal muscle (green), with cell nuclei visualized by blue DAPI staining (Photo courtesy of Dr. Dana M. Cairns, Tufts University).
Image: Neuromuscular tissue engineering: hiNSCs (red) grown in co-culture with skeletal muscle (green), with cell nuclei visualized by blue DAPI staining (Photo courtesy of Dr. Dana M. Cairns, Tufts University).

To increase the pool of neurons for research purposes, investigators at Tufts University (Medford, MA, USA) employed direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. According to their approach, once removed from mouse embryonic fibroblasts (MEFs) and dissociated into single-cell suspension, hiNSCs robustly differentiated into about 80%–90% betaIII-tubulin (TUJ1)-, MAP2-, and NEUN-positive neurons in as few as four days, independently of media composition.

The authors reported in the August 25, 2016, online edition of the journal Stem Cell Reports that these hiNSCs could be passaged indefinitely and cryopreserved as colonies. When injected into an early stage chicken embryo, the hiNSCs incorporated into the brain as well as the neurons of the peripheral nervous system that innervate tissues in a developing limb. Furthermore, they demonstrated the utility of these cells in co-culture with skeletal muscle as well as a three-dimensional tissue model of the human brain.

“This discovery could help reduce a significant barrier to progress in biological and in vitro studies of the human nervous system,” said senior author Dr. David L. Kaplan, professor of biomedical engineering at Tufts University. “Initial results suggest that hiNSCs are useful for future biomedical applications such as high-throughput drug assays, complex innervated co-cultures, and three dimensional models using normal and diseased cells.”

Related Links:
Tufts University



New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Auto-Chemistry Analyzer
CS-1200
New
Lab Sample Rotator
H5600 Revolver

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries