We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Medical Implant Device Reduces Alzheimer’s Pathology and Provides Passive Immunization

By LabMedica International staff writers
Posted on 03 Apr 2016
In landmark proof-of-concept study with mice, a cutting-edge subcutaneous-implant capsule developed for treatment for Alzheimer’s disease, successfully directed the immune system against the disease.

One of the hypothesized causes of Alzheimer’s is over-accumulation of the protein amyloid-beta (Abeta) in different areas of the brain, resulting in deposition of aggregated protein plaques, which are toxic to neurons. One of the most promising treatments is to tag Abeta with antibodies that signal the patient’s own immune system to attack and clear them. To be most effective, this treatment has to be given as early, before the first signs of cognitive decline. Another drawback is that this treatment requires repeated vaccine injections, which can cause side effects.

Image: Schematic representation of implant for passive immunization by long-term therapeutic antibody delivery. Cells genetically engineered to produce a therapeutic antibody are confined in a macroencapsulation “flat sheet” device and implanted in the subcutaneous tissue for in vivo antibody secretion into the bloodstream. Antibodies reaching the brain target, clear, and prevent the harmful amyloid-beta protein plaques of Alzheimer’s disease (Photo courtesy of Lathuilière A et al, 2016, and Swiss Federal Institute of Technology in Lausanne).
Image: Schematic representation of implant for passive immunization by long-term therapeutic antibody delivery. Cells genetically engineered to produce a therapeutic antibody are confined in a macroencapsulation “flat sheet” device and implanted in the subcutaneous tissue for in vivo antibody secretion into the bloodstream. Antibodies reaching the brain target, clear, and prevent the harmful amyloid-beta protein plaques of Alzheimer’s disease (Photo courtesy of Lathuilière A et al, 2016, and Swiss Federal Institute of Technology in Lausanne).
Image: Infographic describing the newly developed implant device that may revolutionize therapy for patients with Alzheimer’s disease (Image courtesy of Lathuilière A et al., 2016, and Swiss Federal Institute of Technology in Lausanne).
Image: Infographic describing the newly developed implant device that may revolutionize therapy for patients with Alzheimer’s disease (Image courtesy of Lathuilière A et al., 2016, and Swiss Federal Institute of Technology in Lausanne).

The laboratory of Patrick Aebischer at the Swiss Federal Institute of Technology in Lausanne (EPFL – École Polytechnique Fédérale de Lausanne; Switzerland) have now innovatively solved the problem. The team developed a bioactive capsule containing cells genetically engineered to produce antibodies against Abeta. The capsule is implanted in tissue under the skin and the cells release a steady and safe flow of anti-Abeta antibodies into the bloodstream, from where they cross over into the brain and target the Abeta plaques.

The “macroencapsulation device” is made of two permeable membranes sealed together with a polypropylene frame. The membranes also allow the cells to interact with surrounding tissue to get the nutrients needed. The complete device is 27-mm long, 12-mm wide, 1.2-mm thick, and contains a hydrogel that facilitates cell growth. All the materials used are biocompatible, and a method was specifically used that is easily reproducible for large-scale manufacturing.

The cells in the capsule must be able to produce antibodies, but they must not trigger a rejection response in immune system (as with organ transplants). This is where the capsule membranes come into play: they shield the cells from being identified and attacked by the immune system. This protection also enables cells from a single donor to be used on multiple patients.

In the study, the device was successful in reducing pathology when tested on a mouse model for Alzheimer’s. Treatment resulted in a dramatic reduction of Abeta plaque load, and the constant flow of antibodies produced by the capsule over a course of 39 weeks prevented the formation of Abeta plaques in the brain. The treatment also reduced phosphorylation of the protein tau, another sign of Alzheimer’s.

The work demonstrated a proof-of-concept that encapsulated cell implants can be used successfully and safely to deliver antibodies to treat Alzheimer’s disease and other neurodegenerative disorders that feature defective proteins.

The study, by Lathuilière A et al., was published March 8, 2016, in the journal Brain.

Related Links:

Swiss Federal Institute of Technology in Lausanne



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries