We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lack of Cystine Kills Renal Cancer Cells in Mouse Model

By LabMedica International staff writers
Posted on 16 Feb 2016
Restricting access to a specific extracellular nutrient—the amino acid cysteine—caused the death of certain types of renal cancer cells both in culture and in a kidney cancer mouse model.

Being transformed may reprogram a cancer cell's metabolism and addict it to certain very specific extracellular nutrients. Deprivation of these nutrients may therefore represent a therapeutic opportunity, but predicting which nutrients cancer cells become addicted to remains difficult.

Image: The majority of kidney cell carcinomas are missing the VHL tumor-suppressor gene. These renal cancer cells remain healthy when all nutrients are present (left panel), but quickly swell up and die of necrosis when deprived of cystine (right panel) (Photo courtesy of Chien-Kuang Ding, Duke University).
Image: The majority of kidney cell carcinomas are missing the VHL tumor-suppressor gene. These renal cancer cells remain healthy when all nutrients are present (left panel), but quickly swell up and die of necrosis when deprived of cystine (right panel) (Photo courtesy of Chien-Kuang Ding, Duke University).

Investigators at Duke University (Durham, NC, USA) worked with clear-cell renal cancer cells (ccRCC) that did or did not carry the von Hippel–Lindau tumor suppressor (VHL) gene. They performed a nutrigenetic screen with these cells by deleting each of the 15 amino acids from their growth media, one by one.

They reported in the February 1, 2016, online edition of the journal Cancer Research that cystine deprivation triggered rapid programmed necrosis in VHL-deficient cell lines and primary ccRCC tumor cells, but not in VHL-restored counterparts. Each molecule of cystine is made from two molecules of cysteine, another sulfur-containing amino acid.

VHL normally suppresses the activity of tumor necrosis factor alpha (TNF-alpha). High levels of TNF-alpha activity generate free radicals that are normally degraded by cystine. In VHL mutant cells TNF-alpha was overexpressed and lack of cystine enabled the free radicals to trigger necrosis of the cancer cells. When mice with implanted renal cell carcinoma tumors were treated with sulfasalazine, a drug that blocked cystine uptake, the tumors displayed significantly delayed growth and necrosis.

"We found that the same machinery that makes these tumors so aggressive also makes them vulnerable to nutrient deprivation," said senior author Dr. Jen-Tsan Chi, associate professor of molecular biology and microbiology at Duke University. "It is like we are beating it at its own game. Most chemotherapies kill cancer cells through apoptosis, and the cancer cells that escape apoptosis are the root cause of chemotherapy resistance and tumor progression. Cystine starvation treatments could address resistance by killing cells through a different mechanism."

Related Links:

Duke University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries