We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

By LabMedica International staff writers
Posted on 30 Nov 2015
Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.

Investigators at Pennsylvania State University (University Park, USA) obtained computed tomography (CT) images of the orthonasal airway of a healthy human subject. A schematic diagram was prepared from the CT scan, which was used as the template to print an experimental model using a three-dimensional printer. The investigators then analyzed the flow field inside the airway.

Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).

They reported in the November 9, 2105, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that during inhalation, the anatomical structure of the oropharynx created an air curtain outside a virtual cavity connecting the oropharynx and the back of the mouth, which prevented food volatiles from being transported into the main stream toward the lung. In contrast, during exhalation, the flow preferentially swept through this virtual cavity and effectively enhanced the entrainment of food volatiles into the main retronasal flow. Thus, the shape of the airway preferentially transferred volatiles to the nasal cavity, which enabled the individual to maximize the smell of the food.

"During quiet breathing, there is no valve that can control the direction of volatile transport," said first author Dr. Rui Ni, assistant professor of mechanical engineering, at Pennsylvania State University. "However, something must be controlling the movement of these particles and keeping them out of the lungs. Smooth, relatively slow breathing maximizes delivery of the particles to the nose. Food smells and tastes better if you take your time."

Related Links:

Pennsylvania State University



New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Myocardial Infarction Test
Savvycheck SensA Heart
New
Adenovirus Test
S3334E ADV Adenovirus Kit

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries