We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

By LabMedica International staff writers
Posted on 26 Feb 2015
A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which encodes the fusion protein mitofusin 2.

Despite the established role of mitofusins (Mfn1 and Mfn2) in mitochondrial fusion, only Mfn2 had been associated with metabolic and neurodegenerative diseases, which suggests that this protein is needed to maintain mitochondrial energy metabolism. Mice lacking the MFN1 gene, which encodes mitofusin 1, seem perfectly healthy, but MFN2-deficient mice die soon after birth. Furthermore, mutations in the MFN2 gene cause human diseases, including the peripheral neuropathy Charcot-Marie-Tooth type 2A. The molecular basis for the mitochondrial dysfunction encountered in the absence of Mfn2 has not been explained.

Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

In the current study, investigators at the Max Planck Institute for Biology of Ageing (Cologne, Germany) worked with cultures of mouse heart muscle cells lacking the MFN2 gene.

They reported in the February 16, 2015, online edition of the Journal of Cell Biology that energy metabolism in the cells was impaired compared to that of healthy heart cells or of heart cells that lacked only Mfn1. The energy metabolic process in the Mfn2-deficient cells was found to have been disrupted by reduced levels of coenzyme Q, a key component of the mitochondrial respiratory chain that generates cellular energy in the form of ATP.

The reduced respiratory chain function in the mitochondria of cells lacking Mfn2 could be partially restored by supplementation with coenzyme Q10, which suggested a possible therapeutic strategy for patients with diseases caused by mutations in the MFN2 gene.

Related Links:

Max Planck Institute for Biology of Ageing



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries