We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Dependence on Lab Animals for Testing Asthma and Allergy Agents Reduced with 3D Test

By LabMedica International staff writers
Posted on 14 Apr 2014
In a recent study, scientists report that they’ve developed a simple, three-dimensional (3D) laboratory technique to test asthma and allergy medications that mimics what occurs in the body, which could help reduce the need for animal testing.

Dr. Amir Ghaemmaghami and colleagues from the University of Nottingham (UK) noted that respiratory disorders, such as asthma and allergies, are becoming more common. These conditions affect the lungs and the airway leading to the lungs, making it difficult to breathe. Respiratory symptoms lead to expensive hospital visits, as well as absences from work and school. Improved agents could provide better relief, but before giving new medicines to people, researchers must first test them in animals—an expensive and arduous process. Sometimes, researchers will use 2D tests in which they apply the drug to a layer of human cells in a lab dish instead, but this is not a satisfactory way to tell how a pharmaceutical agent will perform in a whole animal or a whole individual. Therefore, Dr. Ghaemmaghami’s team developed a new, 3D alternative.

Their test includes three types of human cells that are typically in a person’s airway. In the body, these cells are close together and are involved in the development of respiratory conditions. The 3D model reacted similar to an actual person’s airway when they exposed it to allergens and bacterial extract. They say that the model has the potential of reducing the need for some animal testing of new drugs for respiratory conditions.

The study’s findings were published March 14, 2014, in the ACS’ journal Molecular Pharmaceutics.

Related Links:

University of Nottingham



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries