We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Combination Gene and Stem Cell Therapy Cures Muscular Dystrophy in Mouse Model

By LabMedica International staff writers
Posted on 19 Mar 2013
In a "proof-of-principle" study, researchers have shown that it was possible to cure Duchenne Muscular Dystrophy (DMD) in a mouse model using a combination of gene and stem cell therapy.

Investigators at the University of Minnesota (Minneapolis, USA) began by reprogramming skin cells taken from DMD mice back into an undifferentiated pluripotent stem cell stage. They then employed a gene therapy approach based on the "Sleeping Beauty Transposon" to incorporate the gene for the protein utrophin into the stem cells. Utrophin can substitute for the defective protein dystrophin, which characterizes DMD, without generating an autoimmune response.

The last step was to treat the modified pluripotent cells with the muscle stem cell protein Pax3 (paired box 3), which induced the stem cells to differentiate into muscle cells. Pax3 is expressed in early embryonic growth where it helps to demarcate the paraxial mesoderm. In that way, PAX3 contributes to early striated muscle development since all myoblasts are derived from the paraxial mesoderm.

The modified stem cells were injected into DMD mice. Results published in the March 5, 2013, online edition of the journal Nature Communications revealed that the stem cells were incorporated into muscle tissue that displayed large numbers of micro-utrophin-positive myofibers, with biochemically restored dystrophin–glycoprotein complexes, and improved contractile strength.

"Developing methods to genetically repair muscular dystrophy in human cells, and demonstrating efficacy of muscle derived from these cells are critical near-term milestones, both for the field and for our laboratory," said senior author Dr. Rita Perlingeiro, associate professor of medicine at the University of Minnesota. "Testing in animal models is essential to developing effective technologies, but we remained focused on bringing these technologies into use in human cells and setting the stage for trials in human patients."

"We were pleased to find the newly formed myofibers expressed the markers of the correction, including utrophin," said, Dr. Perlingeiro. "However, a very important question following transplantation is if these corrected cells would self-renew, and produce new muscle stem cells in addition to the new muscle fibers."

Related Links:

University of Minnesota



Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries