We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Technology Reduces Drug Development Costs

By LabMedica International staff writers
Posted on 04 Feb 2013
New technology based on cytochrome P450s (CYPs) proteins will speed up and reduce the cost of the development of new drugs and medicines.

The CYP super-family is a large and diverse group of enzymes that catalyze the oxidation of organic substances. The substrates of CYP enzymes include metabolic intermediates such as lipids and steroidal hormones, as well as xenobiotic substances such as drugs and other toxic chemicals. CYPs are the major enzymes involved in drug metabolism and bioactivation, accounting for about 75% of the total number of different metabolic reactions. The proteins are commercially available for use by companies involved in the discovery of new drugs, but are problematic as they must be transported and stored at temperatures as low as minus 80 degrees Celsius.

Researchers at De Montfort University (DMU; Leicester, United Kingdom) therefore developed a method that allows for CYPs to be shipped and handled at room temperature, eliminating the need for a cold chain, reducing costs, and making CYPs use in testing new drugs much quicker and easier. For the venture, DMU joined forces with life sciences commercialization company Ithaka Life Sciences (Ithaka, Cambridge, United Kingdom) to jointly establish a new company, which will be called CYP Design Limited (CDL, Cambridge, United Kingdom).

“The development of new drugs can be very time-consuming and costly. It can take up to 14 years from the initial idea and cost hundreds of millions of pounds. Thousands of potential new drugs are tested initially for every one successfully brought to market,” said Professor Bob Chaudhuri, PhD, who developed the new technology. “My group's development is designed to provide the proteins that are needed for this work in a cost effective and convenient format.”

“The technology that Professor Chaudhuri has been developing can have a significant impact on the timescales and costs involved in the early stages of drug discovery,” said Bill Primrose, PhD, CEO of CDL. “CYPs are currently transported on dry ice, at around minus 80 degrees Celsius, and are stored as cold as possible in the customer's laboratory until they are needed. His new technology eliminates the need for a cold chain, making it easier to manufacture and ship the proteins, and making them much more convenient for the customer to use.”

CYP-mediated transformations of drug candidates are of crucial importance in the pharmaceutical industry, with multiple roles. Oxidation by CYPs can lead to toxic products, but, on the other hand, local activation of anticancer drugs leads to lethal intracellular toxins at the site of the tumor. The metabolic clearance of most drugs depends on CYPs, and they have been implicated in a large number of drug interactions. Since drug interactions can result in fatalities, drug candidates with CYPs must be taken into account if the expensive and time-consuming development of active compounds with hidden toxic effects is to be avoided.

Related Links:

De Montfort University
Ithaka Life Sciences




New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
LH ELISA
Luteinizing Hormone ELISA
New
ELISA System
ABSOL HS DUO

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries