We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Delivering Stem Cell Therapy from the Nose Proves Safe and Effective

By LabMedica International staff writers
Posted on 15 Jan 2013
Researchers have devised a simple, safe, and effective way to deliver stem cells to treat brain tumor, via the nose.

The study’s findings were published in the December 2012 issue of the journal STEM CELLS Translational Medicine. Treatment alternative for gliomas, the most common type of primary brain tumors, are very limited because of their diffuse invasive makeup and their ability to evade radiation treatments and traditional chemotherapy. Stem cells have shown great potential as a therapy, but how to deliver them optimally to the tumor site has become a challenge.

The most frequently used technique, surgical implantation, has a low survival rate for the stem cells and the procedure itself can lead to complications such as inflammation. Injecting the cells into the blood stream is another approach, but it carries an increased risk of the cells amassing in peripheral organs, which could cause side effects and also means that not enough of the stem cells are getting to the targeted tumor.

“We investigated the feasibility of intranasal administration of neural stem/progenitor cells [NSPC] as an alternative,” said lead principal investigator Nils Ole Schmidt, MD, of the University Medical Center Hamburg-Eppendorf (UMCHE; Hamburg, Germany). He and UMCHE colleague Matthias Reitz, MD, supervised the study, which also involved researchers from the University of British Columbia Hospital (Vancouver, Canada), and Chung-Ang University College of Medicine (Seoul, Korea).

The scientists assessed their notion on three different glioma cell lines in mice. The findings revealed that not only did the stem cells arrive at the targeted tumor, but that they did it rapidly and without remaining in any peripheral regions. The stem cells, Six hours after the first delivery, had enriched within the tumor area. Twenty-four hours later, the number of cells in the tumor had increased even more with up to 24% of stem cells that had been applied as nose drops.

The study also revealed two major migration routes--the olfactory nerve pathways and the small blood vessels that comprise the body’s microvasculature system--and a potential signal that attracted the cells to the malignant tumor. “It is likely that guidance signals such as chemotactic factors released by the tumor itself and the adjacent reactive brain parenchyma drew in the stem cells,” Dr. Reitz said.

“Our study provides proof-of-concept that the noninvasive intranasal passage of NSPC is a highly attractive and efficient alternative method of cell administration for stem cell-based therapies in brain tumors. This offers the possibility of multiple treatments, potentially with different therapeutic payloads during the disease course,” Dr. Schmidt added.

“The study addresses an important aspect of any stem cell treatment: identification of a safe and effective delivery method as the treatment advances toward clinical trials,” said Dr. Anthony Atala, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine (Durham, NC, USA). “These results point to the potential of intranasal delivery as a convenient and noninvasive option for delivery.”

Related Links:
University Medical Center Hamburg-Eppendorf
University of British Columbia Hospital
Chung-Ang University College of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries