We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Method Converts Embryonic Stem Cells into Cells Critical to Spinal Fluid Development and Maintenance

By LabMedica International staff writers
Posted on 22 Nov 2012
Neurological disease researchers have developed a technique for generating choroid plexus epithelial cells (CPECs) from neuroepithelial progenitors derived from embryonic stem cells.

CPECs are essential to the developmental and maintenance of the CSF and blood–CSF barrier they produce, and CPEC dysfunction has been implicated in many neurological disorders, such as Alzheimer's disease. Transplant studies have provided proof-of-concept for CPEC-based therapies, but development of such therapies has been hindered by the inability to expand or generate CPECs in culture.

In the current study investigators at the University of California, Irvine (USA; www.uci.edu) searched for the appropriate growth factors that would induce mouse or human embryonic stem cells to differentiate into functional CPECs. In particular, they looked at the role of bone morphogenetic protein (BMP) signaling, which was known to be required for the differentiation of CPECs from preneurogenic neuroepithelial cells during embryonic development.

Results published in the November 7, 2012, online edition of the Journal of Neuroscience revealed that neural progenitor cells could be derived from mouse or human embryonic stem cells. Exposure of these cells to the protein BMP4 was sufficient to induce them to mature into CPECs. Analysis of these cells showed that in addition to molecular, cellular, and ultrastructural criteria, the derived CPECs (dCPECs) demonstrated functionality that was indistinguishable from primary CPECs, including self-assembly into secretory vesicles and integration into endogenous choroid plexus epithelium.

“Our method is promising, because for the first time we can use stem cells to create large amounts of these epithelial cells, which could be utilized in different ways to treat neurodegenerative diseases,” said senior author Dr. Edwin Monuki, associate professor of pathology and laboratory medicine and developmental and cell biology at the University of California, Irvine.

Dr. Monuki said, “The next steps are to develop an effective drug screening system and to conduct proof-of-concept studies to see how these CPECs affect the brain in mouse models of Huntington’s, Alzheimer’s, and pediatric diseases.”

Related Links:
University of California, Irvine



Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries