We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Drugs May Block Muscular Dystrophy's Toxic RNA

By LabMedica International staff writers
Posted on 01 Dec 2008
A research team seeking drugs to treat muscular dystrophy have used techniques from the realm of dynamic combinatorial chemistry to identify several promising compounds.

Dynamic combinatorial chemistry integrates synthesis of chemical libraries and screening in one process, potentially accelerating the discovery of useful compounds. In the dynamic approach, the libraries are not created as arrays of individual compounds, but are generated as mixtures of components, similar to natural pools of antibodies. One important requirement is that the mixture components exist in dynamic equilibrium with each other. According to basic laws of thermodynamics, if one of the components is removed from the equilibrated mixture--by binding to the target molecule, for example--the system will respond by producing more of the removed component to maintain the equilibrium balance in the mixture.

The dynamic mixture, as any other combinatorial library, is so designed that some of the components have potentially high affinity to a bio-molecular target. These high-affinity components can form strong complexes with the target. If the target is added to the equilibrated mixture, when the effective components form complexes with the target they are removed from the equilibrium. This forces the system to make more of these components at the expense of other ones that bind to the target with less strength. As a result of such an equilibrium shift, the combinatorial library reorganizes to increase the amount of strong binders and decrease the amount of the weaker ones. This reorganization leads to enrichment of the library with the effective components and simplifies their identification.

In the current study, investigators at the University of Rochester Medical Center (New York, NY, USA) used dynamic combinatorial chemistry to seek compounds that would prevent the binding of muscular dystrophy's characteristic toxic RNA – with hundreds or even thousands of CUG base repeats – to the splicing regulator protein MBNL1.

They reported in the November 8, 2008, online edition of the Journal of the American Chemical Society that the method allowed the simultaneous testing of 11,000 compounds and yielded several molecules with significant selectivity for binding to CUG repeat RNA.

"The drug discovery field really is wide open when it comes to RNA, which is a very difficult molecule to target,” said senior author Dr. Benjamin Miller, associate professor of biochemistry and biophysics at the University of Rochester Medical Center. "This discovery gives us, for the first time, a molecule that targets the wayward RNA at the root of myotonic muscular dystrophy. This is a first step toward developing a drug-like molecule that perhaps could be used someday to treat the disease. This lead molecule provides a framework for moving forward.”

Related Links:
University of Rochester Medical Center


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Static Concentrator
BJP 10
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit

Latest BioResearch News

Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns

Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

New Method Simplifies Preparation of Tumor Genomic DNA Libraries