LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

CRISPR Test Diagnoses Mpox Faster Than Lab-Based PCR Method

By LabMedica International staff writers
Posted on 14 Feb 2024
Print article
Image: CRISPR is combined with nanopore sensing technology to detect whether or not mpox is present in a sample (Photo courtesy of 123RF)
Image: CRISPR is combined with nanopore sensing technology to detect whether or not mpox is present in a sample (Photo courtesy of 123RF)

Mpox, formerly known as monkeypox, is a rare viral disease transmitted through physical contact and typically presents mild symptoms like fever, rash, and swollen lymph nodes, though severe cases can require medical intervention. Due to its contagious nature, prompt testing is crucial for isolation and treatment purposes. Current mpox testing requires laboratory equipment and may take hours to yield results. Now, new research suggests a way for faster mpox testing that could be done in any clinic.

Researchers at Pennsylvania State University (University Park, PA, USA) have utilized CRISPR, the groundbreaking gene-editing technology, to develop a faster mpox test. For their study, the team designed a genetic sequence with an attached reporter specifically targeting the mpox virus. The test employs programmable CRISPR RNA that binds to the target and a protein called Cas12a, which together cleaves the reporter to produce fragments of varying sizes. Using nanopore sensing technology, these reporter fragments are analyzed to rapidly and accurately determine the presence of mpox in a sample.

The specificity of the test was validated by its inability to detect cowpox virus, a relative of mpox, thereby confirming its exclusive sensitivity to mpox. This testing method significantly reduces the detection time, taking only 32 to 55 minutes depending on the viral load, compared to the longer duration required for PCR lab testing. The research team is exploring the application of this nanopore technology for the development of tests for other pathogens, aiming to enable multi-target testing from a single sample using a portable device. Although this technology is not yet commercially available, the researchers hope to create a device that could facilitate widespread pathogen testing.

Related Links:
Pennsylvania State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more