LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Device That Detects Cancer Cells Could Help Avoid Invasive Biopsy Surgeries

By LabMedica International staff writers
Posted on 28 Feb 2023
Print article
Image: The Static Droplet Microfluidic device rapidly detects circulating tumor cells in the bloodstream (Photo courtesy of UTS)
Image: The Static Droplet Microfluidic device rapidly detects circulating tumor cells in the bloodstream (Photo courtesy of UTS)

Cancer is a major contributor to illness and death, and those with suspected cancer may need surgery for a diagnosis, especially for liver, colon or kidney tumors. Unfortunately, biopsies can be uncomfortable, costly, and increase the risk of complications due to surgery. To resolve this problem, researchers have created a new device that can detect and analyze cancer cells from blood samples. This could eliminate the need for a biopsy surgery, as well as allow doctors to monitor treatment progress more accurately.

Researchers from the University of Technology Sydney (UTS, Sydney, Australia) have developed the Static Droplet Microfluidic device, which can quickly detect tumor cells that have migrated away from a primary tumor and into the bloodstream. The device utilizes a distinctive metabolic signature of cancer to separate tumor cells from regular blood cells. After tumor cells are located with the device, they can then be studied genetically and molecularly to support diagnosis and classification of the cancer, allowing for more personalized treatment options.

Circulating tumor cells are a precursor of metastasis, which is responsible for approximately 90% of all cancer-related deaths. Studying these cells may offer greater understanding of the biology behind cancer metastasis, which can help in the development of new treatments. The current liquid biopsy solutions are slow, expensive, and require specialist operators, restricting their use in clinical settings. This new technology is designed to be integrated into research and clinical labs without needing expensive and complex equipment or a trained operator, making it practical and cost-effective for doctors to diagnose and monitor cancer patients.

“Managing cancer through the assessment of tumor cells in blood samples is far less invasive than taking tissue biopsies. It allows doctors to do repeat tests and monitor a patient’s response to treatment,” said Professor Majid Warkiani from the UTS School of Biomedical Engineering.

Related Links:
University of Technology Sydney 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more