LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Database Provides First-Ever Map of Proteome Signature in Blood from Cancer Patients

By LabMedica International staff writers
Posted on 10 Jan 2023
Print article
Image: The yellow bar in this readout of protein GFAP indicates elevated expression in blood of patients with brain tumors (Photo courtesy of Human Protein Atlas)
Image: The yellow bar in this readout of protein GFAP indicates elevated expression in blood of patients with brain tumors (Photo courtesy of Human Protein Atlas)

Cancer prediction medicine has received a boost with the recent unveiling of a new cancer protein profile database compiled from AI and machine learning that enables identification of individual cancer types based on a drop of blood.

The new open-access Disease Blood Atlas produced by the Human Protein Atlas (Sweden) consortium provides a first-ever map of the proteome signature in blood from cancer patients. The Disease Blood Atlas highlights 1,463 proteins associated with 12 different types of cancer, and presents proteins that can be used to identify individual cancer types based on a drop of blood.

The Disease Blood Atlas was compiled from measurements of minute amounts of blood plasma collected from 1,400 cancer patients at the time of diagnosis and before treatment. The blood samples underwent a combination of statistical analysis of gene expression and machine-learning-based disease prediction. The release marks the 22nd version of the open-access Human Protein Atlas, a resource for profiling human proteins, which contains 12 sections each exploring the human proteins from different angles, including the new Disease Blood Atlas and the Protein 3-D Structure sections.

The release is accompanied by five million pages of updates in the Human Protein Atlas’ databases of tissues and cell lines. The Protein 3-D Structure section shows the 3-D structures for all human proteins using an AI-based prediction model (AlfaFold). In addition, a major update of the Tissue Atlas section provides detailed multiplex spatial profiling of proteins specific for human testis and kidney. More data is also provided on single cell analysis of tissues and organs, as well as data from an extensive catalogue of human cell lines.

“This is a novel pan-cancer strategy for exploring the proteome signature in blood from cancer patients,” said KTH Royal Institute of Technology Professor Mathias Uhlén who led the Human Protein Atlas consortium. “We believe that the new sections of the open access Human Protein Atlas with large amounts of novel data covering all human proteins provides new dimensions of valuable information for researchers interested in human biology and disease.”

Related Links:
Human Protein Atlas

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more