LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Study Supports Use of Methylated DNA Biomarkers for Cancer Diagnosis and Prognosis

By LabMedica International staff writers
Posted on 20 May 2022
Print article
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons)
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons)

A recent study added weight to the theory that methylated DNA biomarkers could be used for cancer diagnosis and prognosis.

Methylation is a biological process by which methyl groups are added to a DNA molecule. This modification can change the activity of a DNA segment without changing the nucleotide sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and cancer development.

In a recent study, investigators at the H. Lee Moffitt Cancer Center & Research Institute (Tampa, FL, USA) introduced the concept of tumor-based expression quantitative trait methylation (eQTM), which could correlate with gene methylation patterns and gene expression to identify potential biomarkers. For this study, the investigators worked with melanoma as a disease model and assessed whether it was possible to identify a particular methylation signature that could interpret the nature of a tumor’s immune environment and could predict patient outcomes.

Results revealed that methylation sequences in melanoma samples could serve as a surrogate biomarker for the cytolytic activity score (CYT - an index of cancer immunity calculated from the mRNA expression levels of the granzyme A and perforin genes) and predict the type of immune environment in a tumor. In particular, they showed that methylation of the TCF7 (transcription factor 7) gene could predict whether T-cells in a tumor had anti-tumor properties. Furthermore, the TCF7 signature combined with the cytolytic activity score predicted patient outcomes. Melanoma patients with a low TCF7 signature and a high cytolytic activity score had longer survival times than did patients with other signature combinations.

Senior author Dr. Xuefeng Wang, associate member of the department of biostatistics and bioinformatics at the H. Lee Moffitt Cancer Center & Research Institute, said, “While additional studies need to be performed, these analyses suggest that determining immunoepignomic status through tumor-based expression quantitative trait methylation screening could allow for an accurate prediction of patient outcomes. The discovery unlocks potential new targets for personalized treatment decisions. It is similar to a fingerprint or iris scan, as featured in the cover art for the journal.”

The study was published as the cover article in the May 3, 2020, issue of the journal Cancer Research.

Related Links:
H. Lee Moffitt Cancer Center & Research Institute 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more