LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lab-on-a-Chip Technology Detects Hard-to-Diagnose Diseases

By LabMedica International staff writers
Posted on 13 May 2022
Print article
Image: Lab-on-a-chip technology enables rapid testing for various human ailments (Photo courtesy of University of Kansas)
Image: Lab-on-a-chip technology enables rapid testing for various human ailments (Photo courtesy of University of Kansas)

A new technology takes small plastic chips made of the same material as a compact disc or DVD, then transforms them into marvels of engineering and chemistry that quickly can detect hard-to-diagnose human diseases using saliva, urine or blood from a patient. The liquid biopsies can detect circulating tumor cells, cell-free DNA, viruses and vesicles that are released by biological cells associated with a particular disease.

The technology developed at the Center of BioModular Multi-Scale Systems for Precision Medicine, dubbed CBM2, a research center based at the University of Kansas (Lawrence, KS, USA), is pushing forward the boundaries of precision medicine, improving and extending the lives of patients, and creating commercialization partnerships as well as new training and education opportunities. CBM2 recently earned USD 6.6 million in continued funding over the next five years from the National Institutes of Health's National Institute of Biomedical Imaging and Bioengineering (NIBIB) as a National Biotechnology Resource (P41) Center.

Much of the work of CBM2 takes place in collaboration with partners. For instance, researchers at CBM2 are working to develop a handheld instrument to spot viruses giving rise to COVID-19 and to detect ovarian cancer early in women with a high family risk. This kind of cancer detection uses a few blood drops placed on a plastic chip created by the center to look for very small vesicles - the presence of which indicates early stage of cancer that will provide better survival compared to current diagnostic methods. The medical advances developed at CBM2 already are helping patients through commercial partnerships with private firms, and some of these products already are in use to improve outcomes of cancer patients.

Additionally, CBM2 is working on clinical trials to evaluate new therapeutics for pancreatic cancer, which accounts for 7% of cancer deaths across the U.S. The circulating tumor cells are secured from a blood sample using a plastic microchip. Other important research initiatives include a project on a test using small vesicles as markers for a point-of-care test for diagnosing ischemic stroke. The test can be completed in about 30 minutes to help decide how best to treat patients with stroke. In another effort, CBM2 is developing a new nanotechnology platform for sequencing RNA and DNA to detect changes to the RNA genome of viruses that give rise to variants, such as those associated with COVID-19.

“We develop little USD 2 widgets made from a plastic by injection molding that can take a liquid biopsy sample and search for different types of markers that can help a physician manage disease,” said CBM2 director Steven Soper. “To give you an example, this little chip is used to isolate tumor cells out of the blood of cancer patients. A physician will take a sample of blood from the patient, put it into the chip to enrich the tumor cells from the blood sample - there's very few of them, maybe about 10 or so - and then we open those cells to look at the genetic composition to help decide: does the patient have a disease, how to treat the disease, is the patient responding to therapy?”

Related Links:
University of Kansas

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more