We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Clinical Application of Leukocyte Counts Based on Targeted DNA Methylation Analysis

By LabMedica International staff writers
Posted on 14 Mar 2022
Print article
Image: PyroMark Q96 ID instrument for quantitative analysis of genetic or epigenetic DNA modifications using Pyrosequencing technology (Photo courtesy of Karolinska Institutet)
Image: PyroMark Q96 ID instrument for quantitative analysis of genetic or epigenetic DNA modifications using Pyrosequencing technology (Photo courtesy of Karolinska Institutet)

Leukocyte subsets are usually quantified with automated cell counting devices and particularly for stratification of lymphocyte subsets with flow cytometry. Despite broad application, conventional methods have several limitations.

DNA methylation (DNAm) is a covalent modification of cytosine residues, mostly at CG dinucleotides (CpG sites). By measuring the methylation level at CpG sites with cell-type–specific hypo- or hypermethylation, it is possible to quantify the composition of leukocyte subsets using statistical algorithms (deconvolution models).

Biomedical Engineers at the RWTH Aachen University (Aachen, Germany) and colleagues optimized and validated targeted DNAm assays for leukocyte deconvolution using 332 venous and 122 capillary blood samples from healthy donors. In addition, they tested 36 samples from ring trials and venous blood from 266 patients diagnosed with different hematological diseases. Deconvolution of cell types was determined with various models using DNAm values obtained by pyrosequencing or digital droplet PCR (ddPCR).

DNA was isolated from 150 µL venous or 50 µL capillary blood and bisulfite-treated with the EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA). PCR amplicons were sequenced on a PyroMark Q96 ID (Qiagen, Hilden, Germany) and analyzed with Qiagen’s PyroMark Q96 CpG 1.0.9. Digital Droplet Polymerase Chain Reaction (ddPCR) was carried out with the QX200 Droplet Digital reader (Bio-Rad, Hercules, CA, USA). Absolute leukocyte quantification by pyrosequencing was also performed.

The investigators reported that relative leukocyte quantification correlated with conventional blood counts for granulocytes, lymphocytes, B cells, T cells (CD4 or CD8), natural killer cells, and monocytes with pyrosequencing and ddPCR measurements. In some patients, particularly with hematopoietic malignancies, they observed outliers in epigenetic leukocyte counts, which could be discerned if relative proportions of leukocyte subsets did not sum up to 100%. Furthermore, absolute quantification was obtained by spiking blood samples with a reference plasmid of known copy number. The results confirmed cell-type–specific hypomethylation in the genes WDR20, CD4, CD8A, WIPI2, SLC15A4, and CENPA, which was more pronounced compared to the Illumina BeadChip data or reverse nonnegative least square (NNLS) estimation.

The authors concluded that targeted DNAm analysis by pyrosequencing or ddPCR is a valid alternative to quantify leukocyte subsets, but some assays require further optimization. The study was published on February 14, 2022 in the journal Clinical Chemistry.

Related Links:
RWTH Aachen University 
Zymo Research 
Qiagen 
Bio-Rad 

 

 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more