We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Automating Blood Smears Developed for Easier Malaria Diagnosis

By LabMedica International staff writers
Posted on 03 Feb 2022
Print article
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Blood smears are used in diagnosis for a variety of hematological disorders, such as anemia and leukemia. They are also the preferred method of diagnosis of parasitic infections, such as malaria and filariasis in developing world laboratories.

The current “gold standard” for malaria diagnosis is by optical microscopy examination of blood smears. A thin film of the patients’ bloods is fixed onto a microscope slide and stained. The microscopists look at the smear, counting the parasites in various fields of view. These experts can establish the species of malaria and parasite density.

Bioengineers at Cambridge University (Cambridge, UK) collaborating with their colleagues in Tanzania and the UK created a series of devices, which they call “autohaem.” Autohaem devices aim at enabling even non-experts to produce consistent, high quality, thin film blood smears at low cost. The autohaem devices, solves this problem by automating the smearing process so every smear is correct and consistent. The devices come in two varieties, the autohaem smear and the autohaem smear+, the latter of which is fully automated with a motorized smearing mechanism. In tests, inexperienced technicians were able to use the device to produce expert-quality smears.

A key goal of the project was to make the devices accessible to as many people as possible, so the scientists designed their devices to be easy to build, using readily available or 3D-printed components. A pipeline for automated analysis of smear quality was presented and used for device optimization. Red Blood Cells (RBCs), at the typical hematocrit for malaria investigations, are used as the testing media. This pipeline will also be suitable for a more systematic analysis of blood smear preparation, for example, to help with training and evaluation of technicians.

Samuel McDermott, PhD, the senior author of the study, said, “Creating blood smears is a laborious, repetitive task that requires an expert level of skill and manual dexterity. By using automated blood smearing machines, such as autohaem devices, technicians will be able to increase their throughput while maintaining a high enough quality for diagnosis. In some countries, up to 81.5% of blood smears are prepared incorrectly. If a blood smear is prepared incorrectly, when examined under a microscope, the technician will struggle to make a correct diagnosis. Because these smears are often made in a rural clinic and sent to a regional facility for examination, any issues in the smear could cause days of delay.”

The authors concluded that they have developed and presented the autohaem range of devices for automated blood smearing. Autohaem smear is a mechanical device, and autohaem smear+ is an electro-mechanical device. The devices are designed to be sustainable and all the designs and assembly instructions are available under an open source license. The study was published on January 18, 2022, in the journal Review of Scientific Instruments.

Related Links:
Cambridge University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more