LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Artificial Intelligence (AI) Blood Test Can Detect Over 90% of Lung Cancers

By LabMedica International staff writers
Posted on 24 Aug 2021
Print article
Image: DELFI blood test identifies lung cancer using artificial intelligence to detect unique patterns in the fragmentation of DNA shed from cancer cells compared to normal profiles (Photo courtesy of Carolyn Hruban)
Image: DELFI blood test identifies lung cancer using artificial intelligence to detect unique patterns in the fragmentation of DNA shed from cancer cells compared to normal profiles (Photo courtesy of Carolyn Hruban)
A novel blood test identifies lung cancer using artificial intelligence (AI) to detect unique patterns in the fragmentation of DNA shed from cancer cells compared to normal profiles.

The novel AI blood testing technology developed by researchers at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) was found to detect over 90% of lung cancers in samples from nearly 800 individuals with and without cancer. The test approach, called DELFI (DNA evaluation of fragments for early interception), spots unique patterns in the fragmentation of DNA shed from cancer cells circulating in the bloodstream. Applying this technology to blood samples taken from 796 individuals, the investigators found that the DELFI approach accurately distinguished between patients with and without lung cancer. Combining the test with analysis of clinical risk factors, a protein biomarker, and followed by computed tomography imaging, DELFI helped detect 94% of patients with cancer across stages and subtypes. This included 91% of patients with earlier or less invasive stage I/II cancers and 96% of patients with more advanced stage III/IV cancers.

The DELFI technology uses a blood test to indirectly measure the way DNA is packaged inside the nucleus of a cell by studying the size and amount of cell-free DNA present in the circulation from different regions across the genome. Healthy cells package DNA like a well-organized suitcase, in which different regions of the genome are placed carefully in various compartments. The nuclei of cancer cells, by contrast, are like more disorganized suitcases, with items from across the genome thrown in haphazardly. When cancer cells die, they release DNA in a chaotic manner into the bloodstream. DELFI helps identify the presence of cancer using machine learning, a type of artificial intelligence, to examine millions of cell-free DNA fragments for abnormal patterns, including the size and amount of DNA in different genomic regions. This approach provides a view of cell-free DNA referred to as the “fragmentome.” The DELFI approach only requires low-coverage sequencing of the genome, enabling this technology to be cost-effective in a screening setting, the researchers say.

“DNA fragmentation patterns provide a remarkable fingerprint for early detection of cancer that we believe could be the basis of a widely available liquid biopsy test for patients with lung cancer,” said author Rob Scharpf, Ph.D., associate professor of oncology at the Johns Hopkins Kimmel Cancer Center.

“We believe that a blood test, or ‘liquid biopsy,’ for lung cancer could be a good way to enhance screening efforts, because it would be easy to do, broadly accessible and cost-effective,” said lead author Dimitrios Mathios, a postdoctoral fellow at the Johns Hopkins Kimmel Cancer Center.

Related Links:
Johns Hopkins Kimmel Cancer Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more