LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Lipid Biomarker Detects Senescent Cells

By LabMedica International staff writers
Posted on 13 Apr 2021
Print article
Image: Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis (Photo courtesy of Dr. Christopher Wiley)
Image: Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis (Photo courtesy of Dr. Christopher Wiley)
A recent paper identified a lipid biomarker indicative of cellular senescence and described a method to evaluate its effect on the molecular events that lead to senescence.

Cellular senescence is a stress or damage response that causes a cell to stop dividing, and, since senescent cells are not dead, to secrete numerous factors with potent biological activities. This senescence-associated secretory phenotype (SASP) has been characterized largely for secreted proteins that participate in embryogenesis, wound healing, inflammation, and many age-related conditions. By contrast, the lipid components of the SASP have not been well documented.

In the current study, investigators at the Buck Institute for Research on Aging (Novato, CA, USA) focused on the large array of oxylipins, bioactive lipid metabolites derived from the oxygenation of polyunsaturated fatty acids, which are synthesized by senescent cells.

The study was performed on human cells growing in culture and with mice. Results revealed that senescent cells activated the biosynthesis of several oxylipins, which promoted segments of the SASP and reinforced the cell division blockade. Notably, senescent cells synthesized and accumulated an unstudied intracellular prostaglandin, 1a,1b-dihomo-15-deoxy-delta-12,14-prostaglandin J2. The released form, 5-deoxy-delta-12,14-prostaglandin J2, could serve as a biomarker of senolysis in culture and in vivo.

In addition, the PGJ2 prostaglandin was shown to have a functional role in senescence. Inhibiting its synthesis allowed a subset of cells to escape senescence, continue dividing, and present a less inflammatory SASP profile. In contrast, addition of the prostaglandin to non-senescent cells drove them into senescence by activating the RAS cancer-promoting gene, which is also known to trigger senescence.

"The list of age-related diseases definitively linked to cellular senescence keeps growing, as does the number of biotech companies racing to develop drugs to eliminate senescent cells," said senior author Dr. Judith Campisi, professor of biogerontology at the Buck Institute for Research on Aging. "While the field has never been more promising, the lack of a simple biomarker to measure and track efficacy of these treatments has been a hindrance to progress. We are excited to bring this new biomarker to the field and look forward to it being used in the clinic. We hope that identifying and including these bioactive lipids as part of the SASP will encourage researchers working in a broad range of fields to take a new look at cellular senescence. The fact that one of these lipids ends up being a simple non-invasive biomarker for tracking the efficacy of treatments is a huge plus for those of us working to stem the ravages of age-related disease."

The study was published in the April 2, 2021, online edition of the journal Cell Metabolism.

Related Links:
Buck Institute for Research on Aging

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more