LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

A Liquid Biopsy for Diagnosis of Pediatric High-Grade Glioma

By LabMedica International staff writers
Posted on 04 Nov 2020
Print article
Image: MinION flow cell for DNA analysis (Photo courtesy of Oxford Nanopore Technologies Ltd.)
Image: MinION flow cell for DNA analysis (Photo courtesy of Oxford Nanopore Technologies Ltd.)
A liquid biopsy approach that detects cell-free tumor DNA (cf-tDNA) in samples of cerebrospinal fluid has been used to diagnose pediatric high-grade glioma (pHGG), a rare but usually fatal childhood brain cancer.

Tumors release cell-free tumor DNA (cf-tDNA) into cerebrospinal fluid (CSF), allowing for potential detection of tumor-associated mutations by CSF sampling. Up to now, liquid biopsy has been particularly challenging for brain tumors because mutant DNA is shed into body fluids at much lower levels than any other types of tumors.

Investigators at the University of Michigan (Ann Arbor, USA) hypothesized that direct, electronic analysis of cf-tDNA with a handheld analytical platform - the Oxford Nanopore Technologies (Oxford, United Kingdom) MinION - could quantify patient-specific CSF cf-tDNA variant allele fraction (VAF) with improved speed and limit of detection compared with established methods.

Nanopore sequencing is a unique, scalable technology that enables direct, real-time analysis of DNA or RNA fragments. It works by monitoring changes to an electrical current as nucleic acids are passed through a protein nanopore. The resulting signal is decoded to provide the specific DNA or RNA sequence. Using nanopore sequencing, a single molecule of DNA or RNA can be sequenced without the need for PCR amplification or chemical labeling of the sample.

To prove their hypothesis, the investigators performed ultra-short fragment (100–200 base pair) PCR amplification of cf-tDNA for clinically actionable alterations in CSF and tumor samples from 12 patients with pHGG alongside six CSF samples from nontumor control patients. PCR products underwent rapid amplicon-based sequencing on the Oxford Nanopore MinION instrument with quantification of VAF. Additional comparisons to next-generation sequencing (NGS) and droplet digital PCR (ddPCR) were performed.

Results revealed that the Nanopore instrument, which requires significantly smaller amounts of spinal fluid than other sequencing methods, demonstrated 85% sensitivity and 100% specificity in CSF samples (n = 127 replicates) with 0.1 femtomole DNA limit of detection and 12-hour results, all of which compared favorably with NGS. Serial CSF cf-tDNA sequencing by Nanopore demonstrated correlation of radiological response on a clinical trial, with one patient showing dramatic multi-gene molecular response that predicted long-term clinical response.

The results obtained by this study confirmed that Nanopore sequencing of ultra-short pHGG CSF cf-tDNA fragments was feasible, efficient, and sensitive with low-input samples thus overcoming many of the barriers restricting wider use of CSF cf-tDNA diagnosis and monitoring.

"We knew from past research that the genetic sequences of these tumors, including information about the mutations that are driving them, can be found in the spinal fluid - but collecting it is not currently part of the standard of care," said senior author Dr. Carl Koschmann, a pediatric oncologist at the University of Michigan. "That is something we have been hoping to change."

"As caregivers, we are excited about the possibility of monitoring tumors without exposing patients to potential complications from invasive surgeries," said Dr. Koschmann. "This approach suggests we can rapidly and reliably detect key tumor-driving mutations in high-grade gliomas with very small samples - overcoming some of the barriers that were preventing the use of spinal cord fluid in diagnosing and monitoring these patients. And we are optimistic about incorporating this approach into clinical trial design for pediatric brain cancer, allowing us to track molecular response across multiple genes to better understand and predict clinical outcomes."

The study was published in the October 21, 2020, online edition of the journal Clinical Cancer Research.

Related Links:
University of Michigan
Oxford Nanopore Technologies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more