We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

MAIT Cell Activation Dynamics Associated with COVID-19 Disease Severity

By LabMedica International staff writers
Posted on 13 Oct 2020
Print article
Image: The BD FACSymphony A5 flow cytometer (Photo courtesy of BD Biosciences).
Image: The BD FACSymphony A5 flow cytometer (Photo courtesy of BD Biosciences).
The balance between protective versus pathological immune responses in COVID-19 has been a concern since the onset of the pandemic. SARS-CoV-2 infection can lead to acute respiratory distress syndrome (ARDS), a condition characterized by aggressive inflammatory responses in the lower airways.

Severe COVID-19 is not only due to direct effects of the virus, but also in part to a misdirected host response with complex immune dysregulation of both innate and adaptive immune and inflammatory components. Emerging evidence indicates that mucosa-associated invariant T (MAIT) cells are innate-like sensors of viral infection.

Infectious Disease specialists at the Karolinska University Hospital (Stockholm, Sweden) recruited 69 SARS-CoV-2-infected patients 18 to 78 years old with acute COVID-19 disease admitted to the hospital, or followed up in convalescent phase. The team examined blood samples from 24 patients admitted to the Karolinska University Hospital with COVID-19 disease and compared them to blood samples from 14 healthy controls and 45 individuals who had recovered from COVID-19.

Absolute counts in whole blood were assessed by flow cytometry using BD Multitest 6-color TBNK reagents in association with BD Trucount tubes (BD Biosciences, San Jose, CA, USA). Sera were evaluated for soluble factors using proximity extension assay technology (Olink AB, Uppsala, Sweden). Flow cytometry was performed using multiple antibodies and Samples were acquired on a BD Biosciences’ BD FACSymphony A5 flow cytometer.

The investigators found that the number of circulating MAIT cells was sharply lower in COVID-19 patients and the remaining MAIT cells were highly activated, indicating that they play a role in the response to SARS-CoV-2. Further, single-cell RNA sequencing data suggests that MAIT cells are highly enriched among T cells infiltrating in the airways of COVID-19 patients.

Flow cytometry phenotypes of MAIT cells in COVID-19 found that they were characterized by high expression of CD69 (CD69high) and diminished expression of the chemokine CXCR3 (CXCR3low). Both phenotypes were associated with poor clinical outcomes in the patient cohort. Within the airways, transcriptomic analysis revealed significant MAIT cell enrichment and proinflammatory interleukin 17A (IL-17A) profile.

In convalescent patients, there seems to be a recovery of MAIT cells, including normalization of phenotypes, within weeks from resolution of symptoms. The authors suggested that this may help patients fight future microbial infections. Interestingly, CXCR3 levels were still low in some convalescent samples, raising the possibility that it may be a lasting alteration in MAIT cells post-COVID-19.

Johan K. Sandberg, PhD, a Professor of Medicine and senior author of the study, said, “The findings of our study show that the MAIT cells are highly engaged in the immunological response against COVID-19. A likely interpretation is that the characteristics of MAIT cells make them engaged early on in both the systemic immune response and in the local immune response in the airways to which they are recruited from the blood by inflammatory signals. There, they are likely to contribute to the fast, innate immune response against the virus. In some people with COVID-19, the activation of MAIT cells becomes excessive and this correlates with severe disease.” The study was published on September 28, 2020 in the journal Science Immunology.

Related Links:
Karolinska University Hospital
BD Biosciences
Olink AB


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more