LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

A Paper-Based Nucleic Acid Testing Device for Rapid Diagnosis of Mosquito-Borne Viral Diseases

By LabMedica International staff writers
Posted on 22 Sep 2020
Print article
Image: The Aedes aegypti mosquito can spread various tropical diseases including dengue, zika, and chikungunya, which have similar symptoms (Photo courtesy of Gwangju Institute of Science and Technology)
Image: The Aedes aegypti mosquito can spread various tropical diseases including dengue, zika, and chikungunya, which have similar symptoms (Photo courtesy of Gwangju Institute of Science and Technology)
An all-in-one nucleic acid testing device loaded into a paper chip forms the basis for a simple, rapid diagnostic test for a range of mosquito-borne viral diseases.

COVID-19 is not the only disease out there. Several tropical fever viruses transmitted by mosquitoes including zika, dengue, and chikungunya, are becoming a serious problem in global public health. The three diseases have similar symptoms, making early diagnosis particularly difficult without complex molecular diagnostic equipment. Thus, simple diagnostic tools are strongly required to monitor and prevent these diseases.

In this regard, investigators at the Gwangju Institute of Science and Technology (South Korea) developed LAMDA (lab-on-paper for all-in-one molecular diagnostics), which is a mini laboratory on a paper strip. LAMDA comprises a complete LAMP system in a paper strip. LAMP (Loop-mediated isothermal amplification) is a single-tube technique for the isothermal amplification of DNA and is a low-cost alternative to detect certain diseases. In contrast to the polymerase chain reaction (PCR) technique, in which the reaction is carried out with a series of alternating temperature steps or cycles, isothermal amplification is carried out at a constant temperature, and does not require a thermal cycler. Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) combines LAMP with a reverse transcription step to allow the detection of RNA.

The novel LAMDA platform concentrates the entire process of nucleic acid testing including sampling, extraction, amplification, and detection into a single paper chip. To use the LAMDA test, a drop of blood serum and some drops of distilled water are applied to two pads. The liquids flow through the paper strip horizontally and reach the base of a small vertical stack of layers that extracts all the RNA from the sample and multiplies any viral RNA of the three diseases that might be present. The top layer of the vertical stack comprises individual "reaction" patches, each designed to detect one of the three diseases. After the RNA is extracted, it flows up to the top layer, where LAMP reactions cause the fluorescent indicators on a patch to become dim if its target viral RNA is present in the sample.

Results obtained with the LAMDA platform revealed that three targets, zika virus, dengue virus, and chikungunya virus, in human serum could be detected simultaneously on the all-in-one paper chip within 60 minutes at 65 degrees Celsius. The all-in-one paper chip could be used as a real-time quantitative assay for five to 5000 copies of zika virus RNA, and LAMDA performance was demonstrated with five clinical specimens of zika and dengue virus.

Senior author Dr. Min-Gon Kim, professor of chemistry at the Gwangju Institute of Science and Technology, said "We believe that with minor modifications, such as a portable system to maintain reaction temperature at 65 degrees Celsius and a means to detect the fluorescence change with a smartphone, the proposed all-in-one paper chip can become a portable, low-cost, user-friendly, sensitive, and specific nucleic acid test platform with great potential in point-of-care diagnostics. We certainly hope that our approach and achievements with LAMDA will be helpful to advance research and development of on-site medical diagnostic tools,"

The LAMDA diagnostic platform was described in the October 1, 2020, online edition of the journal Biosensors and Bioelectronics.

Related Links:
Gwangju Institute of Science and Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more