We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Six Biomarkers Predict Severity of COVID-19

By LabMedica International staff writers
Posted on 08 Sep 2020
Print article
Image: Schematic diagram of the immunoassay based on proximity extension assay (PEA) technology (Photo courtesy of Olink Proteomics).
Image: Schematic diagram of the immunoassay based on proximity extension assay (PEA) technology (Photo courtesy of Olink Proteomics).
Coronavirus disease 2019 patients admitted to the ICU have high mortality. The host response to coronavirus disease 2019 has only been partially elucidated, and prognostic biomarkers have not been identified.

COVID-19 primarily affects lungs and in the most severe cases results in acute respiratory distress syndrome associated with or without multiple organ dysfunction. A “cytokine storm” may determine the severity of COVID-19, which is the excessive or uncontrolled release of cytokines in response to a pathologic event, such as a viral infection.

Scientists from various institutions collaborating with the Lawson Health Research Institute (London, ON, Canada) enrolled consecutive patients who were admitted to their level-3 academic ICUs at London Health Sciences Centre (LHSC, London, ON, Canada) and were suspected of having COVID-19 based on standard hospital screening procedures. Blood sampling began on ICU admission for up to three days in COVID-19 negative patients or up to seven days in COVID-19 positive patients (with one additional blood draw on day 10).

The team measured 1,161 plasma proteins from the blood of 30 participants: 10 COVID-19 patients and 10 patients with other infections admitted to LHSC's ICU, as well as 10 healthy control participants. A total of 1,161 plasma proteins were measured using an immunoassay based on proximity extension assay (PEA) technology (Olink Proteomics, Uppsala, Sweden). The team identified six molecules of importance (CLM-1, IL12RB1, CD83, FAM3B, IGFR1R and OPTC). They found that these molecules were elevated in COVID-19 patients who would become even more severely ill. They found that when measured on a COVID-19 patient's first day of ICU admission, the molecules could be used to predict which patients will survive following standard ICU treatment.

Douglas D. Fraser, MD, PhD, a Critical Care Physician and lead study author, said, “When a patient is admitted to ICU, we normally wait to see if they are going to get worse before we consider any risky interventions. To improve outcomes, we not only need new therapies but also a way to predict prognosis or which patients are going to get worse.”

The authors conclude that they have described a unique proteome in COVID-19 positive ICU patients, with identification of six novel proteins that appear to be accurate outcome biomarkers for future studies. Given the high morbidity and mortality associated with COVID-19 critical illness, their exploratory data may be invaluable for guiding resource mobilization and/or goals of care discussion, but only after validation in larger COVID-19 positive cohorts. Furthermore, patient stratification is critically important for future COVID-19 interventional trials. The study was published in the September, 2020 issue of the journal Critical Care Explorations.

Related Links:
Lawson Health Research Institute
London Health Sciences Centre
Olink Proteomics


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more