We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Silgan Unicep

Rapid Sepsis Test Delivers Two Days Faster Results

By LabMedica International staff writers
Posted on 19 Feb 2024

In 2017, around 49 million sepsis cases and 11 million sepsis-related deaths were reported globally, as highlighted in a study by the WHO. This staggering figure represents 20% of all deaths worldwide. In such critical cases, speed and accuracy in identifying the bacteria in a patient's bloodstream are vital. This enables doctors to administer the correct antibiotics swiftly, halting the infection's progression. Researchers have now achieved a diagnostic breakthrough after testing a new way to analyze blood samples for suspected sepsis that provided test results two days earlier than before.

Doctors at The Helgeland Hospital Trust (Nordland, Norway), in collaboration with other researchers, explored a novel analysis method known as BCID2. Initially used in several smaller hospitals for analyzing COVID-19 tests during the pandemic, its application for rapid sepsis analysis in Norway had not been explored until now. Their primary objective was to ascertain if this rapid method could be just as effective in smaller hospitals as the traditional, more time-consuming analysis conducted in larger hospital labs. This would mark a significant advancement in the treatment of suspected sepsis patients at local hospitals, particularly crucial for smaller facilities located far from major labs.


Image: The new sepsis test provides faster and reliable results (Photo courtesy of 123RF)
Image: The new sepsis test provides faster and reliable results (Photo courtesy of 123RF)

The study involved analyzing 160 blood samples containing bacteria, collected from a hospital between July and December 2021. While rapid tests were conducted at various local hospitals, standard tests were carried out in a microbiological lab at a regional hospital. The results were promising: the Helgeland doctors received test outcomes two days earlier than before, with accuracy nearly matching that of tests performed at the larger lab using traditional bacterial culturing methods. The BCID2 method also indicated better antibiotic treatment options in one out of four cases. There were fewer than 3% instances where the new test failed to identify bacteria present in the blood. Importantly, there were no false positives – cases where the rapid test incorrectly indicated bacterial presence in the blood.

“The conclusion is that this is a robust and accurate addition to traditional diagnostics for detecting bacteria in blood samples quickly. The method offers great potential for more targeted antibiotic use at local hospitals”, said Kristoffer Hammer Endresen from Nordland Hospital Trust.

“This is an innovative solution with great potential for better treatment and equitable services at local hospitals,” added Hege Harboe-Sjåvik at the Helgeland Hospital Trust. “Two days faster test results can have a significant impact on seriously ill patients at local hospitals. This can provide a more equitable patient service, without the need for patients or healthcare personnel to be moved between hospitals.”

Related Links:
The Helgeland Hospital Trust


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Rickettsia Conorii Assay
RICKETTSIA CONORII ELISA

Latest Microbiology News

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

New Rapid Method for Determining Virus Infectivity Could Revolutionize Response to Future Pandemics

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings