We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Smartphone-Based Technique Helps Doctors Assess Hematological Disorders

By LabMedica International staff writers
Posted on 01 Jun 2020
Print article
Image: High-quality spectra acquired by the image-guided hyperspectral line-scanning system and the mHematology mobile application. The device assesses blood hemoglobin without drawing blood (Photo courtesy of Purdue University).
Image: High-quality spectra acquired by the image-guided hyperspectral line-scanning system and the mHematology mobile application. The device assesses blood hemoglobin without drawing blood (Photo courtesy of Purdue University).
As one of the most common clinical laboratory tests, blood hemoglobin tests are routinely ordered as an initial screening of reduced red blood cell production to examine the general health status before other specific examinations.

Blood hemoglobin tests are extensively performed for a variety of patient care needs, such as anemia detection as a cause of other underlying diseases, assessment of hematologic disorders, transfusion initiation, hemorrhage detection after traumatic injury, and acute kidney injury.

Biomedical Engineers at Purdue University (West Lafayette, IN, USA) and their colleagues have developed a way to use smartphone images of a person's eyelids to assess blood hemoglobin levels. The ability to perform one of the most common clinical laboratory tests without a blood draw could help reduce the need for in-person clinic visits, make it easier to monitor patients who are in critical condition, and improve care in low- and middle-income countries where access to testing laboratories is limited.

The scientists tested the new technique, called mHematology, with 153 volunteers who were referred for conventional blood tests at the Moi University Teaching and Referral Hospital (Eldoret, Kenya). They used data from a randomly selected group of 138 patients to train the algorithm, and then tested the mobile health app with the remaining 15 volunteers. The results showed that the mobile health test could provide measurements comparable to traditional blood tests over a wide range of blood hemoglobin values.

The team created a mobile health version of the analysis by using an approach known as spectral super-resolution spectroscopy. This technique uses software to virtually convert photos acquired with low-resolution systems such as a smartphone camera into high-resolution digital spectral signals. They selected the inner eyelid as a sensing site because microvasculature is easily visible there; it is easy to access and has relatively uniform redness. The inner eyelid is also not affected by skin color, which eliminates the need for any personal calibrations. The prediction errors for the smartphone technique were within 5% to 10% of those measured with clinical laboratory blood.

Young L. Kim, PhD, MSCI, an associate professor and senior author of the study said, “Our new mobile health approach paves the way for bedside or remote testing of blood hemoglobin levels for detecting anemia, acute kidney injury and hemorrhages, or for assessing blood disorders such as sickle cell anemia.” The study was published on May 21, 2020 issue of the journal Optica.

Related Links:
Purdue University
Moi University Teaching and Referral Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more