We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

High-Throughput T Cell Profiling Technique Developed

By LabMedica International staff writers
Posted on 13 May 2020
Print article
Image: Linking peptide specificities with T cell transcriptomes (Photo courtesy of University of California, Santa Cruz).
Image: Linking peptide specificities with T cell transcriptomes (Photo courtesy of University of California, Santa Cruz).
T cells recognize foreign or aberrant antigens presented by major histocompatibility complex (MHC-I) expressing cells through the T cell receptor (TCR) and is the first critical step towards establishment of protective immunity against viruses and tumors.

Staining with multivalent MHC class-I reagents (multimers) followed by flow cytometry is routinely used to interrogate T cell responses, to characterize antigen-specific TCR repertoires and to identify immunodominant clones. Fluorescently tagged multimers displaying individual peptides of interest have revolutionized detection of antigen specific T cells.

A team of scientists working with those at the University of California, Santa Cruz (Santa Cruz, CA, USA) have has developed an approach for high-throughput T cell profiling. The key advance is the ability to load peptides of interest on the MHC proteins that the body uses to present foreign antigens to the immune system. These MHC proteins display these antigens on the surface of cells, activating the body's T cell response, through which the immune system kills malfunctioning or infected cells.

The ability to express antigens in high-throughput fashion would be a boon for immunologists as it could, for instance, allow them to more rapidly and comprehensively profile patient responses to antigens linked to cancer or different infectious diseases. In the case of SARS-CoV-2, for example, the scientist could load MHC proteins with peptides comprising the full complement of the virus' proteins and look at which peptides were most important in prompting the T cell response or how T cell repertoires varied depending on the severity of infection or patient outcome.

To address unbound MHC, the team developed an approach using the protein TAPasin Binding Protein Related (TAPBPR), a chaperone protein that binds to MHCs to maintain their stability and also facilitates the exchange of peptides bound to the MHC. The process was streamlined somewhat by use of a workflow that produced MHCs bound to standard placeholder peptides instead of the particular peptide of interest, which allowed the team to produce MHC-antigen peptide complexes in bulk. The placeholder peptides were bound to the MHC via a photosensitive bond that could be disrupted by applying UV light, allowing the investigators to remove the placeholders and replace them with the actual peptides of interest when it was time to perform T cell profiling. The study was published on April 20, 2020 in the journal Nature Communications.

Related Links:
University of California, Santa Cruz

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The ASTar System has received US FDA 510(k) clearance (Photo courtesy of Q-linea AB)

Automated Sepsis Test System Enables Rapid Diagnosis for Patients with Severe Bloodstream Infections

Sepsis affects up to 50 million people globally each year, with bacteraemia, formerly known as blood poisoning, being a major cause. In the United States alone, approximately two million individuals are... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more