LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mitochondrial Clearance Failure Provides Diagnostic Marker for Parkinson's Disease

By LabMedica International staff writers
Posted on 07 Oct 2019
Print article
Image: A typical mitochondrial network (green) in two human cells (Photo courtesy of Wikimedia Commons).
Image: A typical mitochondrial network (green) in two human cells (Photo courtesy of Wikimedia Commons).
Failure of mitochondria to remove the Miro1 protein following depolarization provides a biomarker that can be used for diagnosis of Parkinson's disease.

Miro1 (Mitochondrial Rho GTPase 1) is an enzyme that facilitates mitochondrial transport by attaching the mitochondria to the motor/adaptor complex. Through its key role in mitochondrial transport, Miro1is involved in mitochondrial homeostasis and apoptosis, as well as Parkinson’s disease (PD) and cancer. Miro1 is localized on the mitochondrial surface and mediates mitochondrial motility. Normally, it is removed from depolarized mitochondria to facilitate their clearance via mitophagy.

Investigators at Stanford University (Palo Alto, CA, USA) had previous identified the inability to remove Miro from damaged mitochondria as a mitochondrial-clearance defect in the cells of Parkinson's disease patients' cells. To explore the possibility of using this defect as a diagnostic marker, the investigators analyzed skin fibroblast samples from 83 Parkinson's patients, five asymptomatic close relatives considered to be at heightened risk, 22 patients diagnosed with other movement disorders, and 52 healthy control subjects.

Results revealed that the Miro-removal defect was present in 78 of the 83 Parkinson's fibroblasts (94%) and in all five of the "high-risk" samples, but not in fibroblasts from the control group or from patients with other movement-disorders.

"We have identified a molecular marker that could allow doctors to diagnose Parkinson's accurately, early, and in a clinically practical way," said senior author Dr. Xinnan Wang, associate professor of neurosurgery at Stanford University. "This marker could be used to assess drug candidates' capacity to counter the defect and stall the disease's progression."

The study was published in the September 26, 2019, online edition of the journal Cell Metabolism.

Related Links:
Stanford University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more