LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Генетические методы позволяют быстро диагностировать болезнь Хантингтона

By LabMedica International staff writers
Posted on 22 Apr 2019
Print article
Схематическое изображение чипа µLAS с двумя независимыми каналами, приводимыми в действие одинаковым давлением и напряжением. Каждый канал содержит область воронки, которая функционирует для разделения и концентрации ДНК (фото любезно предоставлено Университетом Лозанны).
Схематическое изображение чипа µLAS с двумя независимыми каналами, приводимыми в действие одинаковым давлением и напряжением. Каждый канал содержит область воронки, которая функционирует для разделения и концентрации ДНК (фото любезно предоставлено Университетом Лозанны).
Люди с болезнью Хантингтона страдают от резких движений тела и снижения умственных способностей. Состояние обычно приводит к смерти через 15-20 лет после постановки диагноза. Причиной заболевания является область в гене HTT (Huntingtin gene), которая отсутствует у здоровых людей.

Разработана новая система "лаборатории на чипе", получившая название µLAS (µLAboratory for DNA Separation), которая состоит из двух идентичных параллельных каналов, работающих с одинаковыми параметрами срабатывания, чтобы характеризовать образец по отношению к эталонному маркеру длины ДНК в реальном времени.

Ученые из Университета Лозанны (University of Lausanne; Лозанна, Швейцария) извлекли ДНК из клеток крови, амплифицировали соответствующий участок и определили его размер с помощью недавно разработанного чипа. Чип содержит две маленькие воронкообразные камеры шириной в один миллиметр. К этим камерам прикладывается напряжение и давление, чтобы отделить электрически заряженные фрагменты ДНК в соответствии с их размером. Меньшие фрагменты выталкиваются в воронку намного сильнее, чем крупные. Добавив флуоресцентный краситель, команда легко обнаружила точное положение фрагментов под микроскопом и установила их длину.

Переменная длина фрагментов ДНК обусловлена повторением трех нуклеотидов генетического кода (CAG), типичных для тринуклеотидных заболеваний, таких как болезнь Хантингтона. Мутация приводит к разрушительным изменениям в кодируемом белке, которые в настоящее время не до конца понятны, но известно, что белок, продуцируемый мутантным геном, токсичен для клеток мозга. Здоровые люди имеют 35 или менее таких повторов, в то время как большинство пациентов имеют 40 или более. Знание точного размера важно для прогнозирования и ведения этой неизлечимой болезни. Ученые обнаружили длины инородных аллелей в восьми образцах у пациентов с миотонической дистрофией 1-го типа и у пациентов с болезнью Хантингтона, у которых отмечалось до 750 повторов CAG/CTG в течение пяти минут или менее.

Высокая чувствительность метода позволила минимизировать количество циклов амплификации и, таким образом, уменьшить артефакты амплификации, не ставя под угрозу обнаружение расширенного аллеля. Эти результаты предполагают, что µLAS может ускорить рутинное применение повторяющихся последовательностей в молекулярной биологии и улучшить молекулярную диагностику нарушений расширенного повтора. Болезнь Хантингтона является лишь одним из двадцати известных тринуклеотидных заболеваний. Другими являются спиноцеребеллярная атаксия, синдром ломкой X-хромосомы, миотоническая дистрофия и атаксия Фридрейха. В настоящее время методов лечения этих наследственных заболеваний не существует. Исследование было опубликовано 10 января 2019 года в журнале Scientific Reports.

Ссылки по теме:
Университет Лозанны

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more