We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Automated Assay Measures Levels of sPLA2-IIA

By LabMedica International staff writers
Posted on 08 Apr 2019
Print article
Image: The diagram shows how sPLA2-IIA binding to anionic phospholipids leads to its activation and promotes inflammation. The oxidation of the phospholipids produces stress, which causes the anionic phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) to be transported to the outer leaflet. This reaction activates cationic sPLA2-IIA. The higher activity of sPLA2-IIA promotes the hydrolysis of the outer leaflet phospholipids into arachidonic acid and lysophospholipids. Through the cyclooxygenase and 5-lipoxygenase enzymes, arachidonic acid is converted into prostaglandins, leukotrienes, and other inflammatory eicosanoids (Photo courtesy of Randox).
Image: The diagram shows how sPLA2-IIA binding to anionic phospholipids leads to its activation and promotes inflammation. The oxidation of the phospholipids produces stress, which causes the anionic phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) to be transported to the outer leaflet. This reaction activates cationic sPLA2-IIA. The higher activity of sPLA2-IIA promotes the hydrolysis of the outer leaflet phospholipids into arachidonic acid and lysophospholipids. Through the cyclooxygenase and 5-lipoxygenase enzymes, arachidonic acid is converted into prostaglandins, leukotrienes, and other inflammatory eicosanoids (Photo courtesy of Randox).
Phospholipase A2 (PLA2s) are a family of enzymes that cleave the fatty acid in position two of phospholipids, hydrolyzing the bond between the second fatty acid “tail” and the glycerol molecule. Of particular interest is the secreted phospholipase (sPLA2-IIA) that specifically recognizes the sn-2 acyl bond of phospholipids and catalytically hydrolyzes the bond, releasing arachidonic acid and lysophosphatidic acid. Upon downstream modification by cyclooxygenases, arachidonic acid is modified into active eicosanoid compounds, including prostaglandins and leukotrienes.

sPLA2-IIA has been shown to promote inflammation in mammals by catalyzing the first step of the arachidonic acid pathway by breaking down phospholipids, resulting in the formation of fatty acids including arachidonic acid. This arachidonic acid is then metabolized to form several inflammatory and thrombogenic molecules. Elevated levels of sPLA2-IIA are thought to contribute to several inflammatory diseases, and have been shown to promote vascular inflammation correlating with disease risk in coronary artery disease and acute coronary syndrome. Unlike traditional cardiac biomarkers used to predict adverse outcomes in patients, sPLA2-IIA has been shown to act at multiple pathways involved in atherogenesis, from lipid oxidation to modulation of vascular inflammatory cell activation and apoptosis. Measurement of sPLA2-IIA enables clinicians to gain a comprehensive overview of cardiac risk and may help to tailor treatment accordingly.

Recognizing the link between the secreted phospholipases and coronary disease risk, Randox (Crumlin, United Kingdom) has introduced an automated assay (currently for research use only) to measure levels of sPLA2-IIA. This automated assay eliminates the inconvenient and time consuming traditional ELISA based test for sPLA2-IIA.

The Randox sPLA2-IIA Assay was designed for use on a wide range of clinical chemistry analysers, and applications are available detailing instrument-specific settings. The latex enhanced immunoturbidimetric assay kit contains liquid ready-to-use reagents for convenience and ease-of-use. In addition, controls and calibrators are available offering a complete testing package. The addition of the sPLA2-IIA Assay compliments the existing cardiac risk panel from Randox, providing a different outlook and method of assessing cardiac concerns in patients.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more